

Search for Doubly Charmed Baryons at LHCb

Stephen OGILVY, Patrick SPRADLIN, Paul SOLER Feng ZHANG (Tsinghua University)

LHCb-UK 06/01/2011

Contents

- State of charmed baryon research
- $\Xi_{cc}^{+/++}$ searches at SELEX, BABAR & BELLE
- Λ_c^+ selection optimisation
 - Hybrid optimisation
 - MVA optimisation
- $\Xi_{cc}^{+/++}$ signal MC
- Outlook for 2011 data & future work

State of Charmed Baryon Spectroscopy

- Many recently observed new states from BELLE and BABAR.
- First observations, J^P , BRs etc. of a variety of Ξ_c , Σ_c and Ω_c states.
- Still many rich avenues of physics to be investigated.

Figure 1: The SU(4) multiplets of baryons containing u,d,s,c quarks. Circled in blue is the Ξ_{cc}^+ , which only SELEX has observed. Circled in red are completely unobserved states. From PDG.

Doubly Charmed Baryon Searches

Figure 2: Searches for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ at SELEX (left) and BELLE (right). Searches at BELLE, BABAR and FOCUS have failed to observe doubly charmed baryon production. From hep-ex/0208014 and hep-ex/0605075v1 respectively.

- In 2002 SELEX claimed observation of $\Xi_{cc}^+ -> \Lambda_c^+ \text{ K}^- \pi^+ (6.3\sigma)$, subsequently claimed observation of $\Xi_{cc}^+ -> D^+ p^+ \text{ K}^- (4.8\sigma)$.
- But no subsequent searches since then have found evidence of doubly charmed production.
- Production limits on $\sigma(\Xi_{cc}^{+}) \times BR(\Xi_{cc}^{+} -> \Lambda_{c}^{+} -> p^{+} K^{-} \pi^{+}) / \sigma(\Lambda_{c}^{+})$:
 - BELLE: $< 1.5 \times 10^{-4}$ at 90% CL.
 - BABAR: $< 2.4 \times 10^{-4}$ at 95% CL.

Doubly Charmed Baryon Searches

- There also exists a strong discrepancy between theory and SELEX results:
 - Theory $M(\Xi_{cc}^{+}) = 3610 \text{ MeV/c}^{2}$
 - SELEX $M(\Xi_{cc}^{+}) = 3518 \pm 1.7 \text{ MeV/c}^{2}$
 - Theory $\tau(\Xi_{cc}^+) = 0.07 0.20 \text{ ps}$
 - SELEX $\tau(\Xi_{cc}^{+})$ < 0.033 ps at 90% C.L.
 - Predicted that 10^{-5} of SELEX Λ_c^+ s should come from Ξ_{cc}^+ s. They have measured 0.2 originate this way.
- To my knowledge, neither CDF or D0 published any production cross section limits for p-pbar environment.
- Hopefully we can resolve this tension between theory, SELEX and the nonobservations on LHCb.

Figure 3: The SELEX observation of the decay mode $\Xi_{cc}^+ \rightarrow p^+ D^+ K^-$. From hep-ex/ 0406033.

Λ_c^+ selection optimisation

- Daughter in dominant decay mode in doubly charmed baryons; important to optimise for a variety of analyses.
 - Doubly Cabibbo Suppressed mode $\Lambda_c^+ \rightarrow p^+ K^+ \pi^-$ has not been observed (current BR constrained at < 2.4 × 10⁻⁴).
 - Potential for CPV in heavy baryons.
- We have produced a first selection and are moving on to MVA to produce an improved trigger for 2012.

Shamelessly stolen from the prompt charm production internal note.

Hybrid Λ_c^+ Optimisation

- Hybrid analysis undertaken by using $\Lambda_c^+ \rightarrow p^+ K^- \pi^+$ signal MC weighted against an inclusive charm background.
- Undertook a series of rectangular cuts to find a preliminary optimum selection.

Hybrid Optimisation Cuts

Mother Pt > 4.5GeV

End Vertex $\chi^2 < 3$

DIRA > 0.9996

Combination DOCA < 0.75mm

Proton PIDp – PIDpi > 5

Kaon PIDK – PIDpi > 5

All daughter track $\chi^2 < 3$

Daughter track Ghostprob < 0.5

Shown above: massfit from signal MC from 2.5M events. When weighted against an inclusive charm background and scaled up to full 2011 luminosity we expect a significance of around 350 σ .

TMVA Λ_c^+ optimisation

- Will be tricky to observe the DCS Λ_c^+ channel and the Ξ_{cc}^+ , we are currently looking at MVA as an option for 2012.
- Again use Λ_c^+ signal MC and incl. charm bkg.
- Initial results encouraging, MVA methods display greater discrimination than cuts -> definitely use MVA in offline selection.
- If the simpler MVA methods can easily translate to stripping/trigger may utilise a Fisher discriminant, shown bottom.

Ξ_{cc}^{+} signal MC

- Produced by Feng Zhang (Tsinghua) by interfacing genxicc2.0 to Gauss. Prior to this could not generate double heavy quark baryons.
- Still in early stages. We have:
 - 100k $\Xi_{cc}^{+} -> (\Lambda_{c}^{+} -> p^{+} K^{-} \pi^{+}) K^{-} \pi^{+}$ events.
 - BR ~ 0.05, dominant mode.
 - 30k Ξ_{cc}^{+} -> (D⁺ -> K⁻ π^{+} π^{+}) p⁺ K⁻ events.
 - $-40k \equiv_{cc}^{+} -> (D^{0} -> K^{-} \pi^{+}) p^{+} K^{-} \pi^{+} \text{ events.}$
- Caveat: following slides are an offline selection only, have not gone through trigger and stripping.
- A speculative line for $\Xi_{cc}^+ \to (\Lambda_c^+ \to p^+ K^- \pi^+) K^- \pi^+$ has been operational since Stripping 13. Could we have anything in the 2011 data?

$\Xi_{cc}^+ \rightarrow (\Lambda_c^+ \rightarrow p^+ K^- \pi^+) K^- \pi^+ \text{ Signal MC } (100k \text{ events})$

- Apply very loose selection to estimate efficiencies.
- $\pm 15 MeV/c^2 \Lambda_c^+$ mass window to suppress reflections.
- 1st order Polynomial background & Gaussian signal.
- Good agreement in MC truth Nsig & fitted Nsig.
- Approximately 0.51% offline reconstruction and selection efficiency.

Ξ_{cc}^+ -> (D^{+->} K⁻ π^+ π^+) p⁺ K⁻ signal MC (30k events)

- Widen D+ mass window to $100 MeV/c^2$, same loose selection.
- Approximately 0.44% offline selection and reconstruction efficiency.
- SELEX reports relative BRs of

$$\frac{BR_{\Xi_{cc} \to \Lambda_c K\pi}}{BR_{\Xi_{cc} \to DpK}} = 0.36 \pm 0.21$$

 If accurate potentially an important mode in our DCB searches.

Ξ_{cc}^{+} -> (D⁰ -> K⁻ π^{+}) p⁺ K⁻ π^{+} signal MC (40k events)

- Not so promising channel, approximate offline reconstruction and selection efficiency of 0.038%.
- However applying a \pm 50 MeV/c² window on the D⁰ mass results in a very pure signal.

A peak can be seen around $3.5 GeV/c^2$ but the statistics are too low to permit a decent fit.

$\Xi_{cc}^{+} -> (\Lambda_{c}^{+} -> p^{+} K^{-} \pi^{+}) K^{-} \pi^{+} \text{ in } 2011 \text{ data}$

- Speculative stripping code written pre-MC has been running since Stripping 13.
- How many Ξ_{cc}^+ -> Λ_c^+ K⁻ π^+ events can we expect to see in 2011 data?
- Apply trigger and stripping to MC to estimate yields.

Cut	Loose Value	Current Stripping	
Ξ _{cc} +Pt	N/A	>2000MeV	
Ξ _{cc} ⁺ Vertex Chi ²	<20	<30	
Ξ _{cc} ⁺ Vertex Distance Chi ²	N/A	>16	
Ξ _{cc} ⁺ DIRA	N/A	>0.999	
Ξ _{cc} + Daughter K/π cuts	N/A	(P>2.0*GeV) & (TRCHI2DOF<4.0) & (PT>250.0*MeV) & (MIPCHI2DV(PRIMARY)>4.0)	
Ξ _{cc} ⁺ Mass Window	3500±500MeV	<4500MeV	
All π/K/p PID ΔLL	>-5 only for Λ_c^+	>-5	
Child Vz – Parent Vz	N/A	>0.1mm	
Λ _c ⁺ Daughter cuts	(P>2.0*GeV) & (TRCHI2DOF<4.0)	TRCHI2DOF<4	
Λ_{c}^{+} DIRA	>0.98	>0.95	
Λ _c ⁺ Vertex Distance Chi ²	>9	>25	
Λ_c^+ Pt	>1000MeV	N/A	
Λ_{c}^{+} DOCA	<0.5mm	N/A	

Outlook for 2011 data

- Plenty of theory papers on Ξ_{cc}^{+} production cross section at LHC.
- Should be of the order $10^7 \, \Xi_{cc}^{+} s$ produced in LHCb acceptance in 2011.
- Trigger and selection efficiency studies underway to estimate how many will have made it to tape.

The dominant Feynman diagrams for hadronic Ξ_{cc}^+ production at LHCb. $k_{1,2}$ are gluon momenta, P is Ξ_{cc}^+ momentum, $q_{c2,c4}$ are c-bar momenta. From hep-ph/0601032v1.

-	Tevatron		LHC		LHCb	
-	$(cc)_{f ar{3}}[^3S_1]$	$(cc)_{\bf 6}[^1S_0]$	$(cc)_{\bf \bar 3}[^3S_1]$	$(cc)_{\bf 6}[^1S_0]$	$(cc)_{\bf \bar 3}[^3S_1]$	$(cc)_{6}[^1S_0]$
$\sigma_{gg} \; (ext{nb})$	1.61	0.399	22.3	5.44	25.7	6.47
$\sigma_{gc} ({ m nb})$	2.31	0.361	22.1	3.42	20.6	3.00
$\sigma_{cc} ext{ (nb)}$	0.755	0.0435	8.75	0.478	3.18	0.169

Contributing subprocesses to cross sections for hadronic Ξ_{cc}^+ production, incorporating detector acceptances. From hep-ph/0610205v3.

Future work

- Λ_c^+ in 2012...
 - Finalise optimisations.
 - Improve on trigger and stripping for 2012.
 - Begin optimisation for DCS decay mode, search in 2011 data.
 - Opportunities for CPV searches.
- $\Xi_{cc}^{+/++}$ in 2012...
 - Full studies into existing trigger/stripping efficiencies.
 - Produce full signal MC samples for doubly charmed baryons.
 - Begin selection optimisations and improve stripping.
 - Almost certainly will use MVA.