Studies of Charmed Baryons at LHCb

CHARM 2013 Manchester

Stephen Ogilvy on behalf of the LHCb collaboration

University of Glasgow

The LHCb Detector

2 2011 Ξ_{cc}^+ Search

- Double Charm Baryons
- Candidate Selection and Yield Extraction
- Statistical Significance and UL Calculations
- Results and Future Prospects

The LHCb Detector

• Forward arm spectrometer designed for precision flavour measurements

- VELO powerful secondary vertex discrimination to trigger on heavy flavour decays
- Tracker momentum resolution: $\Delta p/p = 0.4\%$ at 5 GeV/c to 0.6% at 100 GeV/c
- RICH daughter particle discrimination: Kaon ID efficiency \sim 95% for \sim 5% $\pi \rightarrow K$ mis-id probability

Ξ_{cc}^+ Search - Motivation I

- Baryons with u,d,s,c form SU(4) multiplets
- Ground state baryons shown
- Three weakly decaying
 C = 2, J^P = 1/2⁺ states:
 - Ξ_{cc} isodoublet (ccu, ccd)
 - Ω_{cc} singlet (ccs)

From PDG: Phys. Rev. D86, 010001 (2012)

- Numerous predictions for masses and lifetimes:
 - *M* (Ξ⁺_{cc}): 3500 − 3700*MeV*/*c*² Phys. Rev. D70 (2004) 094004
 - τ (Ξ_{cc}^+): 100 250*fs* Eur. Phys. J. A45 (2010) 267
- SELEX reported signals in $\Lambda_c^+ K^- \pi^+$ and $p^+ D^+ K^-$ final states
 - $M(\Xi_{cc}^+)$: $3519 \pm 2 MeV/c^2$, $\tau (\Xi_{cc}^+)$: < 30 fs@90% CL
 - Phys. Rev. Lett. 89, 112001 (2002), Phys. Lett. B628 (2005) 18

Ξ_{cc}^+ Search - Motivation - II

- SELEX calculate that 20% of their Λ_c^+ sample is produced from Ξ_{cc}^+ decays
 - Theory predicts Ξ⁺_{cc} production suppressed by several orders of magnitude over Λ⁺_c production - Physics-Uspekhi 45 (2002), no. 5 455
- Subsequent searches at Belle (left), FOCUS (right) and BaBar experiments show no evidence for \(\mathbb{E}_{cc}^+\) with SELEX reported properties

 Phys. Rev. Lett. 97 (2006) 162001, Nuclear Physics-Section B-PS-Proceedings Supplements 115 (2003) 33, Phys. Rev. D74 (2006) 011103

 Might be explained by different production environments - SELEX is hyperon beam on fixed target, FOCUS photoproduction, Belle and BaBar e⁺e⁻

Ξ_{cc}^+ Search - Analysis Outline

- Search for particle in decay $\Xi_{cc}^+ o (\Lambda_c^+ o p^+ K^- \pi^+) K^- \pi^+$
- Using $0.65 fb^{-1}$ of 2011 data at $\sqrt{s} = 7$ TeV Relevant triggers only online for half the year
- Measure production ratio relative to control $\Lambda_c^+ o p^+ \mathcal{K}^- \pi^+$:

$$R \equiv \frac{\sigma(\Xi_{cc}^{+})\mathcal{B}(\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+})}{\sigma(\Lambda_{c}^{+})} = \frac{N_{signal}}{N_{control}} \frac{\epsilon_{control}}{\epsilon_{signal}}$$

- Measured LHCb Λ_c^+ cross-section at $\sqrt{s}=7\, TeV\approx 230 \mu b$ NUCL.PHYS.B871,1-20
- Predicted LHC Ξ_{cc}^+ cross-section at $\sqrt{s} = 14 TeV \approx (60 1800) nb$. At $\sqrt{s} = 7$ TeV expected to be roughly half this
- Assuming the following:

$$\mathcal{B}(\Xi_{cc}^+ o \Lambda_c^+ K^- \pi^+) \approx \mathcal{B}(\Lambda_c^+ o p^+ K^- \pi^+) \approx 5\%$$

expected value of R at LHCb is of order 10^{-5} to 10^{-4}

• Analysis performed with a blind approach.

Ξ_{cc}^+ Search - Candidate Selection

- Use same trigger requirements for control and signal based on $\Lambda_c^+ \to p^+ K^- \pi^+$ decay
 - One Λ_c^+ daughter track must fire calorimeter hardware trigger
 - One Λ_c^+ daughter track selected by inclusive software trigger
 - Λ_c^+ candidate reconstructed and accepted by dedicated $\Lambda_c^+ \rightarrow p^+ K^- \pi^+$ selection algorithm in software trigger - geometric and kinematic requirements, and using RICH PID info for proton.
- Offline reconstruction and selection based on PV displacement and particle identification requirements

• To make Ξ_{cc}^+ candidates:

- Pair Λ_c^+ with K and π at common vertex displaced from PV
- Displacement cut reduces sensitivity to SELEX-like Ξ⁺_{cc}
 Can be relaxed in future analyses
- Artificial Neural Network final selection. Input variables chosen for minimal Ξ⁺_{cc} lifetime dependence

Ξ_{cc}^+ Search - Yield Extraction I

- Fit performed to $\rho^+ K^- \pi^+$ mass spectrum to extract Λ_c^+ yield
- Total yield $N_{con} = (818 \pm 7) \times 10^3$, resolution $\approx 6 MeV/c^2$ (5% total yield shown left)
- For signal yield construct δm quantity:

$$\delta m \equiv m(\Lambda_c^+ K^- \pi^+) - m_{meas}(\Lambda_c^+) - m(K^-) - m(\pi^+)$$

- Take signal resolution from MC, $\approx 4.4 MeV/c^2$ (right)
 - Dedicated generator, GENXICC v2.0, used to produce Ξ_{cc}^+ MC

- Define narrow 2D signal window requiring:
 - $2273 < m_{meas}(\Lambda_c^+) < 2303 MeV/c^2$
 - $|\delta m \delta m_0| < 10 MeV/c^2$
- Number of events in window taken to be N_{S+B}
- Data outside window used to evaluate background inside window
- 5×5 array of tiles centred on signal region.
- Assume background is combinatoric, described by 2D quadratic
- Requires only mild assumptions about distributions
- Crosscheck: 1D fit to dm after tight cut on m_{meas}(Λ⁺_c)

- Selection efficiencies calculated using data-driven techniques and MC
- MC derived effs strongly depend on generated Ξ_{cc}^+ mass and lifetime
 - these are a priori unknown in data
- MC generated with $au_{\Xi_{cc}^+} = 333 \textit{fs}, \ m(\Xi_{cc}^+) = 3500 \textit{MeV}/c^2$
- Vary mass and lifetime for different scenarios:
 - au variations re-weight lifetimes to different exponential distributions
 - *m* variations generator-only MC at $m(\Xi_{cc}^+) = 3300, 3700 MeV/c^2$ used to re-weight Ξ_{cc}^+ daughter p_T .
- Kinematic distribution of Ξ_{cc}^+ at LHC also unknown, assume distributions produced by GENXICC model

Ξ_{cc}^+ Search - Efficiencies II

- Define event sensitivity $\alpha \equiv \frac{\epsilon_{con}}{N_{con}\epsilon_{sir}}$
- Strong lifetime dependence observed.
- Left: $\tau = 333$ fs. Right: $m(\Xi_{cc}^+) = 3500 MeV/c^2$.

			au	$\alpha [\times 10^{-5}]$
$m(\Xi_{cc}^+)$	$lpha \left[imes 10^{-5} ight]$		$100\mathrm{fs}$	60 ± 30
$3300 \mathrm{MeV}/c^2$	2.29 ± 0.61	-	$150\mathrm{fs}$	14 ± 5
$3500 \mathrm{MeV}/c^2$	2.38 ± 0.62		$250\mathrm{fs}$	4.0 ± 1.1
$3700 \mathrm{MeV}/c^2$	2.36 ± 0.63		$333\mathrm{fs}$	2.4 ± 0.6
			$400\mathrm{fs}$	1.8 ± 0.5

Source of uncertainty	Size
Tracking efficiency	4.7%
IP Smearing	13.3%
PID calibration	11.8%
Trigger efficiency	3.3%
Simulated sample size	18.0%
Total uncertainty	26.0%

Ξ_{cc}^+ Search - Statistical Significance and UL Calculations

- As $m(\Xi_{cc}^+)$ unknown, look for signal in $\delta m = 380 880 MeV/c^2$ in $1 MeV/c^2$ steps
- From these calculate local significances:

$$\mathcal{S}(\delta m) \equiv rac{N_{S+B} - N_B}{\sqrt{\sigma_{S+B}^2 + \sigma_B^2}}$$

- Multiple points sampled, must take look elsewhere effect into account:
 - Generate large number of toys containing background only
 - $\bullet\,$ Full analysis procedure applied to each, local significance measured at all values of $\delta m\,$
 - LEE-corrected p-value for given S is then the fraction of toys containing equal or larger local significance anywhere in δm
- If no significant signal seen upper limits quoted
- CL_s method applied to determine ULs on R for varying δm and lifetime hypotheses
- 95% CL upper limit taken as value of R for $CL_s = 0.05$

Ξ_{cc}^+ Search - Results I

• δm spectrum in data shown. No observed excess.

• Candidates after requiring $2273 < m_{meas}(\Lambda_c^+) < 2303 MeV/c^2$ and candidates consistent with:

• left - intermediate $\Sigma_c(2455)^{++}$, right - intermediate $\Sigma_c(2520)^{++}$

Stephen Ogilvy (University of Glasgow)

Ξ_{cc}^+ Search - Results II

- Signal yields across δm.
 Estimated signal coloured bands, ±1σ stat. error grey
- Compatibility check between different background subtraction methods bottom.
- Largest local significances: $S = 1.5\sigma$ (primary method), $S = 2.2\sigma$ (cross check).
- Applying LEE p-values of 99% and 53% for null hypothesis.

Ξ_{cc}^+ Search - Results III

- 95% CL_s ULs as function of δm for each lifetime hypothesis shown
- Predicted value of R at LHCb is 10^{-5} to 10^{-4} expected we don't observe Ξ_{cc}^+ , especially under short lifetime hypotheses.

- Now searching for Ξ_{cc}^+ and Ξ_{cc}^{++} in multiple final states
- Notable inclusion: $\Xi_{cc}^+ \to (D^+ \to K^- \pi^+ \pi^+) p^+ K^-$.
- High D lifetime (1ps) cf. $\Lambda_c^+(0.2ps)$ more efficient selections
- Full 2.08 fb^{-1} at $\sqrt{s} = 8$ TeV available for analysis
- $\Lambda_c^+
 ightarrow p^+ K^- \pi^+$ trigger and selection performance improved for 2012
- 2012 analysis will have far greater sensitivity.

- Results on our 2011 Ξ_{cc}^+ search presented.
- No signal observed. ULs given for variety of Ξ_{cc}^+ lifetime hypotheses.
- Prospects for Ξ_{cc}^+ in 2012 at LHCb look great.
- Healthy charmed baryon program underway at LHCb.
- Many analyses underway or nearing completion.
- Expect more from us very soon!

BACKUP

• 95% CL_s Upper limits in blocks of δm and lifetime. UL given is highest/worst in that region

$\delta m \; ({ m MeV}/c^2)$	$100 \mathrm{fs}$	$150 \mathrm{fs}$	$250 \mathrm{fs}$	$333 \mathrm{fs}$	400fs
380 - 429	1.1×10^{-2}	$2.4 imes 10^{-3}$	$6.4 imes 10^{-4}$	$3.8 imes 10^{-4}$	$2.9 imes 10^{-4}$
430 - 479	$1.0 imes 10^{-2}$	$2.1 imes 10^{-3}$	$5.8 imes 10^{-4}$	$3.4 imes 10^{-4}$	$2.6 imes 10^{-4}$
480 - 529	$1.4 imes 10^{-2}$	$2.8 imes 10^{-3}$	$7.5 imes 10^{-4}$	$4.5 imes 10^{-4}$	$3.4 imes 10^{-4}$
530 - 579	$9.7 imes10^{-3}$	$2.0 imes 10^{-3}$	$5.5 imes 10^{-4}$	$3.3 imes 10^{-4}$	$2.5 imes 10^{-4}$
580 - 629	$9.8 imes 10^{-3}$	$2.1 imes 10^{-3}$	$5.6 imes10^{-4}$	$3.3 imes10^{-4}$	$2.5 imes 10^{-4}$
630 - 679	$1.3 imes 10^{-2}$	$2.7 imes 10^{-3}$	$7.2 imes 10^{-4}$	$4.3 imes 10^{-4}$	$3.2 imes 10^{-4}$
680 - 729	$8.5 imes 10^{-3}$	$1.8 imes 10^{-3}$	$4.9 imes 10^{-4}$	$2.9 imes 10^{-4}$	2.2×10^{-4}
730 - 779	$9.7 imes10^{-3}$	$2.0 imes 10^{-3}$	$5.5 imes 10^{-4}$	$3.3 imes10^{-4}$	$2.5 imes 10^{-4}$
780 - 829	$1.2 imes 10^{-2}$	$2.4 imes 10^{-3}$	$6.6 imes 10^{-4}$	$3.9 imes10^{-4}$	$2.9 imes 10^{-4}$
830-880	1.1×10^{-2}	$2.3 imes 10^{-3}$	$6.2 imes 10^{-4}$	$3.7 imes 10^{-4}$	$2.8 imes 10^{-4}$
380-880	1.4×10^{-2}	$2.8 imes 10^{-3}$	$7.5 imes 10^{-4}$	4.5×10^{-4}	$3.4 imes 10^{-4}$