

GU project status

G. Parès – A. Berthelot

CEA-Leti-Minatec

16-05-2013

MINATEC CAMPUS

Customer initial requirements

- Objectives :
 - To supply thin wafers in order to test the dicing & the stacking of a detector on read out chip for ATLAS experiment
- Project requirements :
 - Process on FE I4 functional wafers / 200 mm
 - Need to have interconnects between ROIC and detector $\rightarrow \mu$ bumps
 - Thin ROIC required \rightarrow 100 μ m
 - Wafers debonding
 - Dicing & detector stacking will be done by Advacam (SME, spin-off of VTT)
 - Wafers bow measurements done by Scottish Microelectronic Center (SMC), GU leading
- Incoming wafers
 - Wafer diameter: 200mm
 - Wafer thickness: ~725um
 - IC Technology: 130 nm / IBM

Process flow proposal – Runs 1 & 2

© CEA. All rights reserved

Process flow proposal – Run 3: R&D

leti

Process flow proposal – Runs 4 & 5 : R&D

LETI proposal

Technical proposal

- Layout of Micro-bumps level
- RUN 1 : Delivery to Advacam of two FE I4 wafers with μbumps on front side / without thinning (725 μm) → D1
- RUN 2 : Delivery to SMC of two FE I4 thinned wafers (100 μm) + μbumps on front side D2
- RUN 3 : Delivery to SMC of two FE I4 thinned wafers + backside stress compensation + μbumps on front side → D3
- RUN 4 : Delivery to SMC of two FE I4 thinned wafers + Optimized backside stress compensation + μbumps on front side → D4
- RUN 5 : Delivery to Advacam of two FE I4 thinned wafers + Optimized backside stress compensation + μbumps on front side → D5
- Optimized thickness of Si will be adapted after run2 if needed (150μm possible).
- Stress compensation layer will be chosen in the LETI materials according to SMC wafer bow/warpage measurements / One single trial, no specific stress study.
- Every functional wafers will be chipped with dummies wafers.

LETI needs :

- GDS files of FE I4 chips : top metal & passivation
- FE i4 Wafer mapping / wafer step plan
- Layer table
- Ten FE I4 wafers (10)

Planning & deliverables proposal

Proposed planning / 8 months duration

	Task	Owner	ſ	Mo	ont	h 1	Ло	ont	h 2	2	Ло	ntł	ז ו 13	м	lon	th	4	Mo	ont	h 5	M	lor	nth	6	Mo	ont	h 7	M	ont	n 8
	μbumps Layout & masks	Open 3D																												
	3D Technology run 1	Open 3D																												
	3D Technology run 2	Open 3D																												
FE I4 wafers	3D Technology run 3	Open 3D																												
	3D Technology run 4	Open 3D																												
	3D Technology run 5	Open 3D																												
	Bow measurement	SMC																												
	Dicing - Stacking	Advacam																												
	Deliverables	LETI - Open 3D												D1			D2				D3				C	94			D	

Deliverables :

- D1 : μbumps GDS files + 2 FEI4 wafers (725μm) with μbumps on front side
- D2 : 2 thinned FEI4 wafers to 100 μm with μbumps on front side / debonded on tape
- D3 : 2 thinned FEI4 wafers to 100 μm with μbumps on front side + stress compensation layer / debonded on tape
- D4 : 2 thinned FEI4 wafers to 100 μm with μbumps on front side + optimized stress compensation layer / debonded on tape
- D5 : 2 thinned FEI4 wafers to 100 μm with μbumps on front side + stress compensation layer / debonded on tape / Advacam

Financial proposal

• Financial proposal :

- μbumps design, layout & mask
- 3D technology on ten FEI4 wafers provided by Glasgow University including :
 - µbumps on front side
 - Temporary bonding
 - Si thinning
 - Stress compensation layer implementation
 - Debonding & taping
 - Shipping to SMC and Advacam
- Five different runs
- Total price : **97 000 €**
- Payment conditions :
 - 36 000 € @ 31/03/2013
 - 61 000 € @ the end of the project

RUN1 results

-	
	Incoming wafers
	Front side µbumps
	RUN 1 : delivering of two wafers to Advacam

- 2 wafers with copper µbumps
 - Start date = 8/03/13
 - Shipping date to advacam = 23/04/13

- -Control
- -Back side and front side cleaning
- -Preclean + seed layer deposition Ti 100nm + Cu 400nm
- -Photolithography « μ Bump », negative photoresist
- -Flash O2
- -ECD Cu 10µm + SAC 8µm
- -Stripping
- -Cu 400nm + Ti 100nm wet etch
- -SAC reflow

Control before process

Observations before process

- 2 wafers provided by Glasgow university
- Control before process: some particles have been observed
- A front side specific cleaning has been performed
 number of particles decreased

µBump litho

Observations after the photolithography step

- The position of alignment marks designed by LETI is not correct
- Alignment of µbump level has been performed on the metal pads directly
 → OK
- μbump diameter=30μm

µBump ECD Cu-SAC

µbumps height measurements after ECD step (wafer map on the 2 wafers)

- ECD Cu 10μm + SAC 8μm
- Strip + μbump height measurements:
 - P24: mean=17.33μm unif = 3.18%
 - P25: mean=17.48 unif=4.08%

μBump after SAC reflow

Observations after SAC reflow

- Seed layer etch + SAC reflow
- 2 probes resistance measurement =~2.5 Ohm on 2 μbump chain on top metal

leti

RUN2/3 status

- 4 wafers with copper µbumps + temporary bonding + thinning 100 µm + stress compensation (run 3)
 - Start date = 12/04/13 (1 month delay vs RUN1)
 - Incoming inspection = some big particules

- Current status = @ seed removal after μbump Cu/SAC ECD
- Short loop with µbumps/Si monitors for temporary bonding and thinning setup in progress

RUN4&5

 Waiting 4 remaining wafers from GU → planning will be shifted accordingly

Temporary bonding solutions

 Move from Brewer HT10.10 Science slideoff to BSI ZoneBond technology

Wafer bonding in LETI

- Permanent Bonding (with or without alignement)
 - Direct bonding (Oxyde, Metallic)
 - Anodic Bonding
 - Metallique Thermocompression
 - Eutectique Bonding
 - Polymer Bonding

- Temporary Bonding (without alignement)
 - Zone Bond Process
 - 3M WSS Process

Requirement

- Bonding with important topology
 - 10-60µm of electrical bumps
- Thinning down to 50-100µm
- Backside processing @200°C
- Cold debonding
- Good throughput
- "Universal"

© CEA. All rights reserved

Zone Bond Tool

Bonder

Debonder

leti

CONFIDENTIAL

WSS 3M Process

Device Gluing

Wa	ifer		

Laser lift-offf

Mechanical carrier debonding

LTHC carrier bonding and UV curring

Glue peel off using speifique tape

Yushin Tool

Bonder

CONFIDENTIAL

- Advantages and challenges
- ZoneBOND:
 - Glue choice
 - Silicon carrier or transparent carrier
 - Chemical polymer cleaning after debonding
 - Chemical resistance of the tape
 - Low bonding energy
 - Specific carrier (availability, cost)
 - New debonding tool
- WSS 3M
 - Cured polymer
 - Important bonding energy
 - Tool maturity
 - Specific polymer
 - Polymer residues after debonding
 - Specific LTHC treatment (availability, cost...)
 - None transparent glass wafer

© CEA. All rights reserved

Pick& place at LETI

leti

Pick & Place tools at LETI

Datacon 2200 apm+

Panasonic FCB3

Tool specifications

	Datacon 2200 apm+	Panasonic FCB3
Alignement accuracy (3σ)	±7μm	±3µm
Bonding speed (units/h)	2000 @ ±7μm 3000 @ ±25μm 1000 @ ±7μm with dispensing or dipping	2000 @ ±3μm
Bonding force	1-50N	5-490N
Chuck temperature (substrate)	Up to 250°C	Up to 150°C
Bond head temperature (chip)	Up to 350°C	Up to 500°C
Bonding cycle complexity (time, temperature, force)	Single step available (only one set of parameters during the cycle)	Multiple steps available
Substrate size	Up to 200mm diameter <3mm thickness	Up to 300mm diameter <3mm thickness
Chip size	0.8x0.8 up to 25x25mm ²	1x1 up to 20x20mm ²
Flip chip unit	Available	Available
Chip packing for pick-up	Wafer/tape Waffle pack Gel-pak®	Wafer/tape Waffle pack (flip mandatory) Gel-pak [®] (no flip available)
Dispensing unit	Available	Available
Dipping unit	30 and 50µm depth	20μm depth

Micro fluidic passive interposer (project with CERN)

- Direct bonding with main steps:
 - Surface preparation (critical): Hydrofilic or hydrophobic
 - Bonding under vaccum
 - Baking at high temperature
 - SAM control
 - Test under high pressure
 > 100 bar

Open 3D[™] technological offer

- Technological modules définitions :
 - 🔶 TSV
 - 🔶 RDL
 - Interconnections
 - ✦ Stacking
 - Packaging with partner collaboration

Open 3D[™] technological offer

TSV AR 1:1 AR 2:1 AR 3:1 **TSV** Last **Pillars** Micro-bumps Landing micro-bumps Interconnections **Interconnections** nn+ Under Bump Metallurgy (UBM) UBM Redistribution layer (RDL) RDL **Stacking** Stacking : D2W

Technological modules

DRM / DK / layout / masks

LETI proposal **30** © CEA. All rights reserved

Open 3D[™] technological offer / TSV

TSV Gallery

LETI proposal **31** © CEA. All rights reserved

leti

Open 3D[™] technological offer / TSV

leti

Open 3D[™] technological offer / Micro-bumps

LETI proposal **33** © CEA. All rights reserved

Open 3D[™] technological offer / Landing micro-bumps

leti

LETI proposal 34 © CEA. All rights reserved

Open 3D[™] technological offer / Pillars

leti

LETI proposal 35 © CEA. All rights reserved

Open 3D[™] technological offer / UBM

leti

LETI proposal 36 © CEA. All rights reserved

Open 3D[™] technological offer / RDL

Open 3D[™] technological offer / Stacking

Solder bumps DRM & schematic

• Wafer size :

- 200 & 300 mm
- Solder bumps material : Cu stud / SnAg solder
- Minimum pitch : 120 μm
- Solder pillar diameter : 60-80 μm
- Solder pillar thickness : Cu 35-40 μm / SnAg 25-30 μm

LETI proposal 38 © CEA. All rights reserved

Cost estimation for full interposer

process steps	
Seed deposition Ti/Cu	
Photo ubumps FS	
ECD Cu/SAC	
Stripping	
Seed Cu/Ti etch	
Reflow	
Glue spin coating	
BONDING	
GRINDING (4 steps)	
CMP	
LTO Déposition	
VIAS Photo	
VIAS HM etch	
VIAS Si etch	
VIAS PMD etch	_
PASSIVATION Deposition	
PASSIVATION Gravure	
VIAS Stripping	
CONTACTS Photo	
CONTACTS etch	
CONTACTS Stripping	
Seed deposition Ti/Cu	
RDL Photo	
RDL Cu ECD	
RDL Stripping	
RDL anneal	
SEED LAYER etch	
ELECTRICAL TESTS	
PASSIVATION Photo	
ELECTRICAL TESTS	
UBM deposition	
Photo UBM	
UBM etch (4 steps)	
Stripping	
Debonding	
Cleannig glue	
Dicing tape mounting	
Dicing chips	
Tape UV release	
Chips pick out	
handling and box packaging	

66 main steps

Estimate cost (<u>not contractual</u>) for 10 wafers = 150 kEuros

for 1000 wafers need more feasibility study for cost evaluation and processing capability

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thank you for your attention

marge distribute a marger attactions