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Abstract

LHCb is the dedicated heavy flavour experiment on the LHC accelerator ring. An
analysis measuring the relative branching fractions of Λ+

c → phh′ decays, where
hh′ ∈ {K−π+, K−K+, π−π+, π−K+}, is presented using 1024.8 ± 35.9 pb−1 of pp colli-
sions gathered by LHCb during 2011. Independent measurements are made using samples
of Λc produced from the primary interaction and from those produced in semileptonic
decays of Λ0

b→ Λ+
c µ
−νµ. The measured relative branching ratios in the prompt analysis

are

B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) = (2.03± 0.07 (stat)± 0.10 (syst))× 10−2, and

B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) = (7.04± 0.19 (stat)± 0.34 (syst))× 10−2,

while in the semileptonic analysis they are measured to be

B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) = (1.68± 0.03 (stat)± 0.04 (syst))× 10−2, and

B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) = (7.45± 0.06 (stat)± 0.24 (syst))× 10−2.

In the semileptonic analysis we make the first observation of the decay mode Λ+
c → pπ−K+,

with a significance of 11.1σ. We measure the ratio:

B(Λ+
c → pπ−K+)/B(Λ+

c → pK−π+) = (1.62± 0.15 (stat)± 0.05 (syst))× 10−3 .

Charged hadron discrimination in LHCb is provided by two ring imaging Cherenkov
detectors. A data-driven study on the performance of the aerogel Cherenkov radiator is
presented. Particle identification information is used to construct variables describing
the likelihood of hadronic particle hypotheses of reconstructed tracks, on which cuts are
placed in typical physics analyses. The preparation of new data samples allowing for the
data-driven efficiency correction of particle identification cuts on proton tracks is described.
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Preface

This thesis documents the candidate’s work, carried out within the LHCb collaboration, in
measuring the relative branching fractions of Λc decays using data gathered in 2011 with
the LHCb detector. It also details studies performed by the candidate on PID calibration
and the performance of the LHCb RICH system aerogel.

In Chapter 1, we review the theory behind the Standard Model of particle physics,
referring to the original research that underpins its development and formalism. We review
in particular the development of the Quark model, and the Cabibbo-Kobayashi-Maskawa
mixing matrix governing the weak couplings of the quarks. We then provide a review
of some current phenomenology results from lattice QCD and HQET, before detailing
some of the recent experimental results in charmed baryon spectroscopy. We conclude
the chapter with a review of recent results, and motivate several potential analyses of
Λ+
c → phh′ decays at LHCb, where hh′ ∈ {K−π+, K−K+, π−π+, π−K+}.
In Chapter 2, we describe the design and operation of the Large Hadron Collider

beauty (LHCb) detector at the Large Hadron Collider (LHC). We describe the systems
responsible for particle tracking, particle identification, and calorimetry. We outline the
trigger system at LHCb, concluding the chapter with a brief description of the Monte
Carlo (MC) generators used by LHCb to simulate p – p interactions and heavy-flavour
decays.

In Chapter 3 we outline in more detail the particle identification (PID) at LHCb, with
particular focus on the performance and design of the RICH system. We then detail
a data-driven efficiency correction for the selection of tracks using PID discriminants,
which has been developed at LHCb by a number of people within the collaboration
over recent years. The method relies on the reconstruction of decays which are identified
unambiguously through kinematic constraints and decay topology. The candidate identified
a lack of high transverse momentum protons in the calibration data, and prepared new
calibration samples using several sources of Λ+

c → pK−π+ decays. The candidate optimised
the selections using the helicity information of the Λc decay to acquire samples with far

iii



greater purity than selections developed by others within the collaboration. The candidate
then conducted a series of stability checks to evaluate the sources of systematic uncertainty
associated with the extraction of the signal kinematics. We conclude the chapter by
describing a study by the candidate to evaluate the performance of the aerogel in a
data-driven way. The results acquired in this study were influential in the decision by the
LHCb collaboration to remove the aerogel for the LHC run II.

In Chapters 4 – 5 we detail an original analysis conducted by the candidate
in measuring the branching ratios of decays of the form Λ+

c → phh′ decays, where
hh′ ∈ {K−π+, K−K+, π−π+, π−K+}, using data gathered in 2011 by the LHCb detec-
tor. The work in these chapters was almost entirely carried out and implemented by the
candidate in consultation with Paul Soler and Patrick Spradlin. The exceptions to this
are the optimisation of the “stripping” selection algorithms, which were implemented by
Patrick Spradlin in consultation with the candidate, the production of the simulation and
data files from the reconstructed data, which was implemented by Patrick Spradlin, and
the development of the Λc IPχ2 fit model for prompt and secondary Λc discrimination in
the analysis of Λc produced at the primary interaction, which was implemented by Patrick
Spradlin.

In Chapter 6 we present the evaluation of systematic uncertainties and the final
results from this analysis. All work in this chapter was carried out and implemented
by the candidate in consultation with Paul Soler and Patrick Spradlin. The results
given correspond to the most precise measurements to date on the branching ratios
B(Λ+

c → pK−K+)/B(Λ+
c → pK−π+) and B(Λ+

c → pπ−π+)/B(Λ+
c → pK−π+). We provide

the first observation of the decay mode Λ+
c → pπ−K+, which is the first observation of

a doubly-Cabibbo suppressed decay mode of a charmed baryon and the lowest recorded
charm baryon branching fraction to date. We provide the relative branching ratio of this
mode relative to the Cabibbo-favoured mode, B(Λ+

c → pπ−K+)/B(Λ+
c → pK−π+).
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Chapter 1

Theory review

Few things are as satisfying to the human mind, and to human curiosity, as a good mystery.
My generation of physicists have grown up with the wonders of the internet and personal
computers, making possible research our forebears could only dream of. Still, I cannot
help but feel envy for those forebears who lived through the first developments of quantum
theory and electrodynamics, into what would eventually become the Standard Model
(SM) of particle physics. The twentieth century arguably saw some of humanity’s deepest
reappraisals of nature’s most fundamental aspects.

While the golden days of theory and experiment informing each other quite so keenly has
arguably passed, thus far this century has had several surprises in store for experimentalists.
One of the most prominent being the first model-independent observation of neutrino
oscillations by the Super-Kamiokande experiment [1]. As an undergraduate student I
recall particularly recent texts asserting that neutrinos were massless - suddenly we were
innundated with proof that this was not the case.

In 2015, we eagerly await the LHC run II to see what it might bring. The Standard
Model is in rude health - with the independent discovery of the long-theorised Higgs
boson by both the ATLAS [2] and CMS [3] collaborations it is arguably too robust to
experimental scrutiny. Despite the Standard Model’s inability to explain gravity and
dark matter on the cosmological scale (among other problems), it stands up to the most
rigorous experimental tests the particle physics community can level against it.

For all the wonderfully elegant extentions to the Standard Model conceived by the theory
community over the past 50 or more years to remedy this incompleteness, the experimental
community has not found empirical evidence to definitively favour any particular one. The
LHCb collaboration has made great strides to inform this discussion - the first evidence
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for the decay B0
s→ µ+µ− found in parallel with CMS [4–6] has already placed powerful

constraints on two Higgs doublet models, a category including many sypersymmetric
models, informing discussion from the theoretical community on observables that may be
sensitive to new physics at LHCb in rare B decays with more data [7–9].

The LHCb detector is suited to performing a wide variety of heavy-flavour physics
measurements with unprecedented precision. While it is primarily designed to record
the decays of bb, it has also proven adept at recording the vast volumes of cc production
occuring in LHC collisions. This includes the ability to cleanly reconstruct a wide variety
of charmed baryon decays. This is a field in which theoretical and experimental knowledge
has seen recent and vast improvements, but one in which a great many results are still
to be found. To this end the candidate conducted an analysis to measure the branching
fractions of the Λc baryon to hadrons without hyperon mediation, given in Chapters 4 – 6.
Better understanding of these decays than is available presently is vital to conducting a
wide variety of LHCb analyses with charmed baryon decays. These include searches for
rare decays that are sensitive to new physics, and complementary searches of CP-violation
to those conducted in the B and D meson systems being conducted at LHCb.

We first review the fundamental theory underpinning the Standard Model in Section 1.1.
We then discuss the quark model in Section 1.2, leading to a brief overview of the CKM
matrix and CP-violation in Section 1.3. We conclude the chapter in Section 1.4 by
reviewing recent results in charmed baryon experiment and theory, and describing the
phenomenology of Λc decays and branching fraction predictions.

1.1 The Standard Model

The Standard Model describes the most basic building blocks of matter and how they
interact with one another. The fermions are spin-half particles comprising the quarks
and leptons, which make up the vast majority of everyday matter. They interact via the
exchange of gauge bosons, integer-spin particles that mediate the four fundamental forces.
The mathematics of the theory are best described as a gauge theory, obeying certain
precise symmetries which imbue the model with extraordinary predictive power. In this
section we outline the fundamentals of the standard model, with the particles and forces
it describes.
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1.1.1 The fermions and bosons

The leptons consist of three generations of doublets, each of which contains a charged
and neutral particle. The charged particles are the electron (e), the muon (µ) and the
tauon (τ). Each of these has a neutrino counterpart, respectively the νe, the νµ and the
ντ . Every charged lepton has an anti-matter counterpart with an opposite electric charge,
while for the neutrinos there exist both the possibilities that they too have anti-matter
counterparts, or that they are themselves their own antiparticles.

The remaining fermions in the SM are the quarks, again corresponding to three
generations. In each generation there is a quark with an electric charge +2

3
e, and one

with charge −1
3
e. The type of quark is referred to as the “flavour”. The positively charged

quarks are the up (u), charm (c) and top (t), while the negatively charged are the down
(d), strange (s) and bottom (b). Each quark has a property referred to as colour, with
three possible colour states. Like the charged leptons, each quark has an anti-matter
counterpart with the opposite electric charge.

The quarks and leptons interact with one another via the four fundamental forces in
the universe. These are the force of gravitation, electromagnetism, the nuclear strong
and the nuclear weak forces. The gravitational force is many orders of magnitude weaker
than the other forces, and when making calculations at the high energy scales of the LHC
collisions, gravity may be safely neglected.

Each of the remaining forces is understood to be mediated by the exchange of gauge
bosons. The electromagnetic force is mediated by exchange of the massless photon (γ).
All electrically charged particles interact via electromagnetism, meaning that all fermions
in the standard model experience this force except the neutrinos. The photon does not
possess mass or electrical charge, and as such cannot couple to itself or decay to other
particles. Consequently, the force’s range is infinite, and its effects are easily observable at
the energy and length scales that humans inhabit.

The nuclear weak force was first recognised in beta decay of radioactive particles. It is
mediated by the massive W± and Z bosons, which have world-average measured masses
of 80.385 ± 0.015 GeV/c2 and 91.188 ± 0.002 GeV/c2 respectively [10]. This high mass
results in the force possessing a very short range O (10−18 m). The weak gauge bosons
couple to all fermions which conform to certain helicity conditions 1.

The final and most powerful force is the nuclear strong force, which is mediated by
1Helicity refers to the projection of a particle’s spin onto its momentum. If the spin is aligned with the

momentum, it is referred to as right-handed. If the two are antiparrallel it is referred to as left-handed.
The weak bosons only couple to left-handed particles.
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the massless gluon (g). The gluon interacts only with particles possessing a color charge,
and as such the quarks feel the strong force while the leptons do not. Despite the force’s
mediation by a massless gauge boson, it has a short interaction range of O (10−15 m).
This is because unlike the massless photon, which is neutral, the gluon itself carries
colour charge, and is therefore able to couple to itself. This self interaction leads to the
phenomenon of asymptotic freedom [11], giving rise to the confinement of colour-charged
particles. Free quarks are not observed, and instead they must exist in combinations which
are colour-neutral.

One final particle in the Standard Model firmament remains. The symmetry of the
weak force should dictate that in order for the electroweak gauge to be renormalisable, its
gauge bosons should be massless. However, as described, they are found experimentally to
have masses which in relation to most other fundamental particles are huge. The concept
of spontaneous symmetry breaking, as had been used in theories of superconductivity
by Anderson in 1958 [12], was known to be capable of providing the weak bosons with
mass in the theory, but work by Nambu [13] and Goldstone [14] had shown that for every
spontaneously broken symmetry in a quantum field theory, there must be an additional
massive vector boson. In 1964 three distinct teams of researchers published papers which
showed that when a field which spontaneously breaks the symmetry of a gauge theory,
massive vector bosons arise [15–17]. This field is now referred to popularly as the Higgs
field, and through its excitations it was predicted that another boson may be observed.
This particle, termed the Higgs boson, was finally observed by the ATLAS and CMS
experiments at CERN in 2012 [2, 3], such that every fundamental particle in the Standard
Model has now been observed.

1.1.2 The mathematics of the SM

The Standard Model is a gauge theory, or a field theory that obeys a gauge symmetry.
Such a symmetry occurs whereby the equations describing the field remain constant after
an operation to all fields in space. The gauge transformations comprise a Lie group, termed
the symmetry group of the theory. When the field theory is quantised it acquires guage
bosons, the quanta of the gauge fields. A Special Unitary group of order n (SU(n)) has
n2−1 generators, which can be interpreted as a fundamental force with n2−1 vector bosons.
Electromagnetism is mediated only by the photon, while the weak force is mediated by
three heavy bosons. As such, they were originally expected to correspond to a U(1) group
and a SU(2) group respectively. One of the great achievements underlining the SM was
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the realisation by Glashow, Salam and Weinberg that the electromagnetic and weak forced
may be unified, similarly to the unification of electricity and magnetism in the 19th century.
They realised the gauge group for the unified electroweak force is SU(2)× U(1)Y [18–20]2.
The gluons mediate the strong force, and carry colour charge. The allowed permutations
of colour are given in the next section, but we note for now that there are eight gluon
colour states generated by the SU(3) group.

An elegant representation of the dyanamics of a system is the Lagrangian. Classically
it is given as

L = T − V (1.1)

where T is the kinemtic energy of the system and V is the potential energy. The Lagrangian
can be substituted into the Euler-Lagrange equation through application of the principle
of least action:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (1.2)

where ∂µ is the covariant derivative. In a many-particle system the Lagrangian for the
system is then the summation of the Lagrangians for the particles and their interactions.
The full standard model Lagrangian is then

L = Lboson kinetic + Lfermion kinetic + Lfermion masses + LHiggs. (1.3)

This dictates all the interactions between fundamental particles in the Standard Model.

1.2 The Quark Model

1.2.1 From hadrons to quarks

In the early-mid twentieth century wide variety of what are now known to be hadrons were
discovered, such that few at the time believed that they could all be fundamental particles.
The discovery of the charged pion in 1947 [21] was originally seen as a candidate for the
mediator of the strong force, predicted by Yukawa in 1935 to explain the strong attraction
between the proton and neutron [22]. The observation of the ∆ particles presented new
questions - these particles were unstable, decaying into nucleons and pions with short

2We note that the gauge bosons of this group are not the photon and weak bosons, but instead the
W 1,2,3 and the B, which in the formalism give rise to the γ, W± and Z found in nature, after spontaneous
symmetry breaking.
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lifetimes. The discovery of new particles which were longer-lived prompted Gell-Mann [23]
and Nishijima [24] to propose a new concept of strangeness.

This was eventually extended into the eightfold way [25], which is described by the SU(3)

group. This model, while incomplete, was a radical leap forward in our understanding of
the spectrum of observed hadrons, and a vital step towards our current understanding
of the Standard Model. The model placed the nucleons with total angular momentum
J = 1/2 into an octet representation. Any two generators of the group which commute can,
in addition to the dimensionality of the group, characterise the representation. Usually
these are taken to be the third component of the isospin, I3, and the hypercharge, defined as
Y = B + S where B is the baryon number and S is the strangeness. The SU(3) symmetry
is only an approximate symmetry - the different masses of the particles and their different
weak interactions break it.

At the time the eightfold way was proposed, only nine of the baryons of J = 3/2
had been identified. The model’s earliest success was Gell-Mann’s prediction that these
would fit very well into a similar decuplet representation following SU(3), predicting
the existence of one further particle with S = -3. This was observed at the Brookhaven
Laboratory in 1963 [26], with the mass predicted correctly to be approximately 1.67 GeV/c2

by the roughly linear mass spacing of the baryons with increasing strangeness. Gell-Mann
suspected that a triplet, corrsponding to the fundamental representation, existed in the
form of three more fundamental particles, which he dubbed “quarks”. These came to be
known as the u, d and s. All hadrons were thought to be bound states of these quarks.

The relation of strangeness-violating decays to these quarks came from Cabibbo in
1963 [27]. He posited that the weak eignenstates of quarks are rotated from the mass
eigenstates, by an angle, now known by his name, which dictates the strength of coupling
between quark flavours. This presented a new problem - under this formalism, Flavour
Changing Neutral Currents (FCNCs) would be allowed at tree level, when experimentally
such decays were known to be highly suppressed. The Glashow-Illiopoulis-Maiani (GIM)
mechanism, postulated in 1970 [28], demonstrated that with the addition of a fourth quark
these tree level amplitudes would cancel 3 .

In November of 1974, two experiments independently discovered a narrow resonance at
3.1 GeV/c2 [29,30]. This resonance had the narrow width and approximate mass of the
expected bound state of cc, and was subsequently named the J/ψ as a compromise between
the two proposed names of J and ψ. This was rapidly followed by the discovery in 1975

3Not precisely, due to the mass difference between the up and charm quarks.
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of the first charmed baryon candidates [31] (one of which was the Λc), and observations
of the D0 [32] and D+ [33] followed in 1976. This quick series of discoveries led to the
widespread acceptance of the quark model.

The discovery of the muon in 1937 [34] and the tauon in 1975 [35] had given us
three generations of leptons. It was therefore predicted that nature’s tendency towards
symmetries would lead to the observation of a third generation of quarks. This was
confirmed in 1978 when the Υ was discovered [36] and interpretted as a bb bound state.
Searches for the predicted tt quarkonium continued without success, until it was realised
that if its mass was high enough, its lifetime would be so low it would decay prior to
hadronisation [37]. The top quark was not discovered until 1995, when both the CDF [38]
and D0 [39] detectors at the Tevatron accelerator independently observed its decays.

1.2.2 The u, d, s and c hadrons

Free quarks are never seen due to colour confinement. The only way to access their
properties is by studying the hadrons they form. In this section we review the configurations
of quarks in the mesons and baryons, and describe in particular the SU(4) multiplets of
baryons composed of u, d, s and c.

The discovery of the Ω− at first appeared to violate the Pauli exclusion principle,
which states no two fermions can possess the same quantum numbers. Two distinct spin
configurations allow for two of the strange quarks to coexist in the hadron, while in the Ω−

there are three. To resolve this, the existence of a new quantum number, the colour charge,
was postulated. Colour is never observed freely - combinations of quarks in hadrons must
be colour-neutral. By a convenient analogy with visible light, the colour charges are named
red, blue and green, with anti-red, anti-blue and anti-green for the antiquarks. Colour
is neutral in the event that a colour is bound with its anti-colour counterpart, or in the
event that a red, blue and green charge are bound.

Colour confinement therefore dictates that quarks can hadronise together in two
configurations. The first is a bound quark and antiquark, or a qq state whereby the colour
charges of the quarks are equal and opposite - this is termed a meson. The second is
when three quarks, or a qqq state, of different colour charges are bound, resulting in a
hadron that is colourless - this is termed a baryon. An equivalent statement of the Pauli
exclusion principle is that the wavefunction for a fermion state must be antisymmetric
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under exchange of two quarks of equal mass. For the baryons this can be written as

|qqq〉A = |colour〉A × |space, spin, flavour〉S (1.4)

with A and S denoting the components which are symmetric or anti-symmetric under the
described transformation. Without colour, the overall wavefunction would be symmetric
under such transforms and forbidden for fermions.

The configurations of the lightest four quarks are represented by a SU(4) symmetry,
albeit one which is badly broken because the mass of the charm quark is significantly
higher than the three light quarks. The configurations of mesons made of u, d, s and c
quarks form a 15-plet and a singlet:

4⊗ 4̄ = 15⊕ 1 (1.5)

while for the baryons the configurations form three twentyplets and a quartet:

4⊗ 4⊗ 4 = 20⊕ 20
′

1 ⊕ 20
′

2 ⊕ 4̄. (1.6)

For the four lightest quarks, the pseudoscalar (spin-parity assignment JP = 0+) meson
states are shown in Figure 1.1. It should be noted that while every charmed meson in the

Figure 1.1: The 16-plet for the pseudoscalar JP = 0+ mesons made from the four lightest quarks.
Reproduced from [10].
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Figure 1.2: The 20-plet corresponding to the JP = 1
2

+ baryons, the 20
′
1-plet corresponding to the

3
2

+ baryons and the 4̄-plet corresponding to the 1
2

− baryons, all corresponding to the baryons
from the SU(4) representation of the four lightest quarks. Reproduced from [10].

SU(4) formalism has been observed, a number of charmed baryons remain unobserved.
The spectra of charmed baryons in the SU(4) formalism is given in Figure 1.2. As will
be more fully reviewed in Section 1.4, evidence for doubly-charmed baryon production
has only been found in one experiment, and no triple-charm production has ever been
observed.

The particles given correspond to those particles which are ground-state systems of
bound quarks. They are arranged into multiplets based on their spin-parity assignments
JP , where P is the partity quantum number, J = L+ S is the total angular momentum,
and S and L are the spin and angular momentum quantum numbers respectively. The
alignment of the quark spins, which are all of magnitude 1/2 and may be either parallel or
antiparallel, result in the ground state multiplets corresponding to ground-state assignments
of JP = 1/2+ for the hadrons with the quark spins as ↑↓↑ and JP = 3/2+ for hadrons
with quark spins ↑↑↑.

Further excitations of the quark system are possible in the quark model. Radial and
angular exitations of the quarks result in resonant states which can decay strongly with short
lifetimes (O(10−23) s). Knowledge of the charm meson spectra are very well understood,
and in recent years many of the predicted excitations have been observed. LHCb has even
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recently observed the first heavy-flavour spin-3 meson in decays of B0
s→ D0K−π+ [40].

However, knowledge of the charmed baryon spectra has proceeded more slowly. The
current state of the field is outlined in Section 1.4.

1.3 The CKM matrix and CP-violation

1.3.1 Quark mixing with two generations

As stated in the previous section, the phenomena of strangeness-violating decays was
first explained by Cabibbo in 1963 [27]. He posited that the flavour eigenstates and
mass eigenstates were rotated from one another by an angle. In the context of the quark
model with u, d and s quarks, this interpretation means that the u couples via the weak
interaction to a superposition of d and s. This rotation angle is parameterised as(

u

d
′

)
=

(
u

d cos θc + s sin θc

)
(1.7)

This was first measured by taking the ratio of branching fractions

B(K+ → µ+νµ)

B(π+ → µ+νµ)
∝ mK sin2 θc
mπ cos2 θc

(1.8)

where the kaon/pion in the decay undergoes annihilation, with the u coupling to the
down-type quark and a W boson. The current best measurement of the Cabibbo angle is
13.02◦ [10]. The GIM mechanism [28] extended this to four quarks, predicting the existance
of the charm quark c. The weak eigenstates q′ are related to the mass eigenstates q by:

d
′
= Vudd+ Vuss (1.9)

s
′
= Vcdd+ Vcss (1.10)

where |Vij|2 is the probability of quark j decaying to quark i. In matrix notation, with
four quarks we find: (

d
′

s
′

)
=

(
Vud Vus

Vcd Vcs

)(
d

s

)
, (1.11)
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or using the Cabibbo angle:(
d
′

s
′

)
=

(
cos θc sin θc

− sin θc cos θc

)(
d

s

)
, (1.12)

where the 2 × 2 matrix is called the Cabibbo matrix. Using just one parameter, the
Cabibbo angle, the mixing between the four lightest quark states can be parameterised.

The smallness of the off-diagonal terms in the CKM matrix gives rise to the concept
of Cabibbo suppression. Hadronic decays involving transitions corresponding to the off-
diagonal elements are suppressed due to the sin θc term.. Considering the hadronic decays
of the D0, we expect abundant decays of D0→ K−π+, where the c decays via W emission
to a s. In the case of the decay D0→ π+π−, where the c decays via W emission to a d,
we expect from the small value of Vcd relative to Vcs that this rate should be suppressed,
despite the larger Q-value for the latter decay. Indeed, the world-averages of these decays
are currently [10]:

B(D0→ K−π+) = (3.88± 0.05)× 10−2 (1.13)

B(D0→ π−π+) = (1.40± 0.03)× 10−3. (1.14)

We therefore refer to the former as a Cabibbo-favoured (CF) decay, and the latter as
a Cabibbo-suppressed (CS) decay. Depending on the structure of a decay there can
be multiple Cabibbo-suppressed transitions in a single decay mode. For example, the
two-body doubly-Cabibbo suppressed decay D0→ K+π− has the branching fraction [10]:

B(D0→ K+π−) =(1.38± 0.03)× 10−4. (1.15)

As such, the observation of highly Cabibbo-suppressed decays can be experimentally
challenging due to their low branching fractions.

1.3.2 The third generation

Few concepts in particle physics are as important as symmetry. Symmetries dictate
all conservation laws in physics - for example, translational symmetry underpins the
conservation of momentum. Certain discrete symmetries in physics are of key importance
in particle physics. These are charge conjugation (C), parity (P ) and time reversal (T ).

Originally these were thought to be conserved in all interactions. In 1957, an experiment
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led by Wu found that parity was violated in the weak decays of 60Co atoms [41]. The
combined symmetry CP was shown to be broken in the decays of neutral kaons by Cronin
and Fitch in 1964 [42].

This is incompatible with a quark model with only two generations. To conserve
probability, the Cabibbo matrix must be unitary4. For an N × N unitary matrix, the
number of free parameters is (n− 1)2, and the number of complex phases, through which
CP -violation can enter the theory, is (N − 1)(N − 2)/2. Therefore in a two generation
quark model, there are no complex phases and CP -violation cannot occur. The minimal
dimensionality of any quark mixing matrix that permits CP -violation in weak interactions
is N = 3. This was one of the earliest indications that there should be an as-yet unobserved
third generation of quarks.

1.3.3 The CKM matrix

The Cabbibo matrix was generalised to the three dimensional case by Kobayashi and
Maskawa, into what is now referred to as the Cabibbo-Kobayashi-Maskawa quark mixing
matrix [43]. The weak eigenstates are now related to the mass eigenstates as:d

′

s
′

b
′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 . (1.16)

With the three rotation angles θij , and a complex phase δ, we can paramaterise the matrix
in what has come to be termed the the standard paramaterisation [44]:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12c23 − s12s23s13e

iδ c23c13

 (1.17)

where sij = sin θij and cij = cos θij and δ is the CP -violating phase. The sizes of these
parameters are not dictated by the theory, and must be measured experimentally. The

4Mathematically, a unitary matrix is one which when multiplied by its conjugate transpose yields the
identity matrix.
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current world-average measurements [10] of the parameters are

VCKM =

0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015

0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012

0.00886+0.00033
−0.00032 0.0405+0.0011

−0.0012 0.99914± 0.00005

 . (1.18)

We have already noted that the CKM matrix is unitary, and therefore its on-diagonal
components must obey the relation:

∑
i

|Vij|2 =
∑
j

|Vij|2 = 1 (1.19)

where i is the set of up-type quarks and j the down-type quarks. This is necessary in
that the probability of coupling of any given up type quark to the down type quarks is
unity (and vice-versa for down-type coupling to up-type). Unitarity requires that the
off-diagonal elements obey the relation

∑
k

Vki V∗kj = 0 (1.20)

where the sum over k is over the up-type quarks and fixed, and i, j are over the down-type
quarks where i 6= j. This gives rise to six different relations dependent on the looping
index, such as:

Vud V∗ub + Vcd V∗cb + Vtd V∗tb = 0, (1.21)

each of which gives rise to a triangle in the complex plane. The triangle area is constant,
and relates to δ. The relation in Equation 1.21 is the most commonly referred to of the
six, and the angles of the triangle it describes are:

α = arg

(
VtdVtb

∗

VudVub
∗

)
(1.22)

β = arg

(
VtdVtb

∗

VcdVcb
∗

)
(1.23)

γ = arg

(
VudVub

∗

VcdVcb
∗

)
(1.24)

These are referred to as the unitarity angles, and the current state of our knowledge
on these parameters is shown in Figure 1.3. One of the key aims of LHCb is to make
high-precision measurements of the angle γ through analysis of B meson decays.
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Figure 1.3: The current knowledge of and constraints on the unitary angle CP -violation parameters.
Reproduced from [45].

1.4 Charm baryon phenomenology

While recent years have seen some advancement in our understanding of charm baryon
spectra and decays, there is still much in this field to be measured and discovered. In this
section we will review some selected phenomenology and results, and describe some of the
more interesting questions facing the field, which remain unanswered.

1.4.1 Predictions from HQET and the lattice

While the underlying theory of Quantum Chromodynamics (QCD) is a very precise one,
the manifestations of QCD in nature are often very complex. Making predictions on the
bound states of quarks is therefore challenging, and a number of powerful methods of
performing QCD calculations have been developed by the theory community. While the
heavy b mass enables results on bottom baryons to be calculated from the application of
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non-relativistic QCD (NRQCD) [46], the c mass is too light for relativistic effects to be
removed from the calculations.

The use in physics of effective theories, where one integrates out effects not relevant
at the scales involved in a theory, is common. One of the most successful in recent years
in the Heavy Quark Effective Theory (HQET) [47–49], a QCD expansion in the inverse
powers of the mass of the heavy quark, 1/mQ. In the case of single heavy-quark baryons
this corresponds to the approximation of a stationary heavy quark interacting with a
light quark dipole, used to simplify calculations. This is possible when the heavy quark
Q is a charm or beauty quark, which are much heavier than the scale of the strong
interaction, ΛQCD ≈ 400 MeV. For the past two decades, results in this field have been
extensively produced to predict a wide variety of heavy baryon properties. These include
the baryon masses [50, 51], their decay widths [51–53] and their lifetimes [54–56]. For the
singly-charmed baryons, these predictions have been generally in good agreement with
experiment, however there still remain many unmeasured charmed baryon properties to
test HQET against.

Another powerful method by which charm baryon calculations are produced is lattice
QCD [57], where space-time is discretised to a grid, with quark fields located at the grid
sites and gluon fields operating on the links between neighbouring sites. This technique has
proven particularly adept at predicting the masses of heavy quark baryon states [58–61].
The masses of baryons containing at least one c or b quark, as calculated in a recent study
by Brown et al. [62], are given in Figure 1.4. This figure should emphasise not only the
power of lattice calculations, as evident in the fine agreement with experiment, but also
the daunting task facing experimentalists to populate this menagerie of states.

1.4.2 Recent experimental results

Excited charm baryon states

The B-factories, in particular BELLE and BaBar, have been very successful in making
a plethora of first observations of excited singly-charmed baryons [65–72]. Our best
knowledge of the spectra of singly-charmed baryons is given in Figure 1.5. The spin-parity
assignments of many of the observed states are still unknown, requiring angular analysis
with larger datasets.
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Figure 1.4: The masses of the heavy-flavour baryons from lattice QCD calculations. Where such
states have been observed by experiment (red solid lines) a good agreement is demonstrated [10,
63, 64]. We note that the masses of baryons containing beauty quarks have been offset by
−nb . 3 GeV/c2 such that they may be shown with the much lighter charmed baryons. Reproduced
from [62].

Doubly charmed baryons

We take particular note of the search for doubly-charmed baryon production. In the
SU(4) formalism we find states corresponding to ccd (Ξ+

cc), ccu (Ξ++
cc ) and ccs (Ω+

cc).
Theoretical calculations generally agree that the C = 1 states should have lifetimes
between 100 – 250 fs, with the C = 2 state having a lifetime between 500 – 700 fs [73,74].
Evaluations for the particle mass generally predict that the Ξcc isodoublet should have
a mass between 3.5 – 3.7 GeV/c2, with the mass of the Ω+

cc predicted to be between
3650 – 3800 GeV/c2 [75–78].

The SELEX collaboration has reported the observation of the Ξ+
cc in its decays to

ΛcK
−π+ [79] and to pD+K− [80]. The reported state had a measured mass that, at

3519 ± 2 MeV/c2, was consistent with predictions from the theory community. Its mea-
sured lifetime, however, was consistent with zero, and less than 33 fs at the 90 % confidence
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Figure 1.5: The spectra of known singly-charmed baryons and their mass splittings. Reproduced
from [10].

level. This is in strong disagreement with the theory predictions, and is in stark contrast
with the lifetime of the Λc (τ ≈ 200 fs).

If such an observation is legitimate, then much can be learned from the study of
the baryon, and why its lifetime is so uncharacteristically short. Subsequent searches
at BELLE [65], BaBar [81] and most recently at LHCb [82] have not shown evidence
for doubly-charmed baryon production. As such, the matter is still very much open to
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discussion, and the theory community eagerly awaits a second experimental observation of
the state.

Amplitude analysis

In hadronic multibody decays, intermediate and strongly decaying particles can be pro-
duced, such that the final state is topologically similar were the decay to proceed in a
non-resonant fashion. These resonances are of vital importance in the study of heavy-
flavour baryons. In charmed mesons, spectator diagrams are the dominant form of weak
decays, where the the heavy quark emits a W and the light quark remains unchanged.
Exchange diagrams, whereby the W emission of the heavy quark couples to the light quark
in the hadron, are suppressed in meson decays due to helicity and form factor concerns [83].
In baryons, due to the three-body decay topology, these effects do not inhibit exchange
contributions. Quark diagrams illustrating exchange and spectator diagrams are shown
for a number of singly-charmed baryons in Figure 1.6.

Figure 1.6: Quark diagrams of baron decays, where the form of weak decay is W emission and ss
interference (left), Cabibbo-favoured W exchange (mid) and Cabibbo-suppressed W exchange
(right). Reproduced from [84].

In particular, decays of Λc to hadrons without hyperon mediation (Λ+
c → phh′ where

hh′ ∈ {K−π+, K−K+, π−π+, π−K+}) are particularly useful for studying the relative im-
portance of spectator and exchange diagrams in enhancing charm baryon decay rates.
The large number of strongly decaying intermediate resonances in these decays allow
the isolation of exchange and spectator effects. For example, in the decay Λ+

c → pK−π+,
the decay can proceed non-resonantly, or via intermediate processes like pK∗(892) and
Λ(1520)π−. At first order the decay Λ+

c → ∆++(1232)K− can only proceed via. exchange
decays. With analysis of the Λ+

c → phh′ modes, the amplitudes of these decays can be
measured to inform calculations of charmed baryon decay rates and lifetimes.

The first amplitude analysis of a charmed baryon decay was recently carried out by the
E791 Collaboration [83]. Where the amplitudes of meson resonances are entirely described
by the resonant mass pairings of the daughters (for example in D+→ h1h2h3, the variables
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m(h1h2) and m(h1h3) are sufficient to fully characterise the decay), this is not true for
baryons. This is because the Λc and the proton in the decay carry spin, and as such
there are angular considerations in the resonant characters. The non-resonant amplitude
is assumed to be uniform across the phase space. The full decay amplitude including
resonant components is given by:

dΓ ∼ 1 + PΛc

2

(
|
∑
r

Br(mr)αr, 1
2
, 1
2
|2 + |

∑
r

Br(mr)αr, 1
2
,− 1

2
|2
)

+
1−PΛc

2

(
|
∑
r

Br(mr)αr,− 1
2
, 1
2
|2 + |

∑
r

Br(mr)αr,− 1
2
,− 1

2
|2
) (1.25)

where PΛc is the Λc polarization. αr,m,λp is the complex decay amplitude for resonance r
with spin m (the Λc spin projection onto the z-axis) and a proton helicity λp in the rest
frame of the Λc. Br is the Breit-Wigner amplitude, and its form is given in [85].

To fully paramaterise the resonant character of a Λ+
c → phh′ decay, 5 variables are

required, two characterising the resonant mass pairings and 3 helicity angles. These angles
and their definitions will be detailed in Section 3.5.8, where they are used in the selection
of Λc decays in an analysis conducted by the candidate. The E791 study used a statistical
sample of approximately 1000 Λ+

c → pK−π+ decays. With the high statistics of charm
decays at LHCb, the experiment can be the first to perform amplitude analyses of the
Cabibbo-suppressed decay modes. Provided systematic uncertainties can be controlled, it
can also improve the precision of the Cabibbo-favoured fit, and in doing so fit for more
resonant components in the decay.

1.4.3 Λ+
c → phh′ decays

There are still many unanswered questions about Λ+
c → phh′ decay rates and amplitudes.

Table 1.1 reproduces the current knowledge of the relative branching ratios of Λ+
c → phh′

decays.
We note that in the errors quoted, a significant external component enters through the

absolute branching fraction of Λ+
c → pK−π+, which at the time of writing in the PDG is an

average of a series of model-dependent results, with a high error of 26 % [10]. The current
best measurement on the relative branching fractions of Λ+

c → pK−K+ to Λ+
c → pK−π+
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Mode BF Refs Note
Λ+
c → pK−π+ (5.0± 1.3)× 10−2 [86–88] Derived from B(B→ Λ+

c X)

→ pK
∗
(892)0 (1.6± 0.5)× 10−2 Inclusive K∗(892)0

→ ∆(1232)++K− (8.6± 3.0)× 10−3

→ Λ(1520)0π+ (1.8± 0.6)× 10−2 Inclusive Λ(1520)0

→ pK−π+ nonresonant (2.8± 0.8)× 10−2

Λ+
c → pπ−π+ (3.5± 2.0)× 10−3 [89]
→ pf0(980) (2.8± 1.9)× 10−3 Inclusive f0(980)

Λ+
c → pK−K+ (7.7± 3.5)× 10−4 [90, 91]
→ pφ (8.2± 2.7)× 10−4 Inclusive φ
→ pK−K+ non-φ (3.5± 1.7)× 10−4

Λ+
c → pπ−K+ < 2.3× 10−4 [92] CL = 90%

Table 1.1: World-average branching fractions for Λ+
c → phh′ decays as recorded in the 2012 PDG

Review of Particle Properties [10]. Where noted, the PDG has adjusted the branching fractions
for resonant decays to include all final states of the indicated resonances, not just the phh′ final
state of interest.

are from BELLE [90], measuring:

B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) = 0.014± 0.002 (stat)± 0.002 (syst) (1.26)

where the first errors are from limited signal statistics and the second are from systematic
uncertainties. The current best measurement on the ratio of Λ+

c → pπ−π+ to Λ+
c → pK−π+

is from NA32 [89], and has a considerably lower precision:

B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) = 0.069± 0.036. (1.27)

We note that the doubly-Cabibbo suppressed decay Λ+
c → pπ−K+ has not yet been

observed.
The massive production of cc at LHCb has allowed the experiment to gather unprece-

dented high-statistics datasets on a number of charmed baryon decays. The primary
experimental challenges to making high precision measurements of these relative branching
fractions are the selection of promptly produced, hadronic Λc decays over the high hadronic
combinatoric background. The short lifetime of the Λc relative to other charmed hadrons
makes the rejection of background a key requirement to produce a precise result. The lack
of amplitude models for the Cabibbo-suppressed decays also presents significant challenges,
in that the simulation of the Λ+

c → phh′ decay kinematics, and mitigating systematic
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uncertainties from any model-dependence, becomes more difficult. However, with the high
statistics gathered by the LHCb machine, the statistical uncertainties in any such analyses
will invariably be small.

Such a measurement is also a gateway to other LHCb analyses. Better understanding
the branching fractions and resonant character of the Λ+

c → phh′ decays can inform the
theory community considerably. Within the Λ+

c → phh′ decay modes, a considerable
number of intermediate resonances may occur (at the very least, the K∗, Λ(1520) and
∆++ are all accessible in the Cabibbo-favoured decay). High statistics studies of these
resonances and their interference effects can provide valuable insight into the nature of
the spectator and exchange decays which are thought to give the charmed baryons their
lifetime hierarchies. Better understanding of the acceptances and kinematics of the decay
Λ+
c → pK−π+ can lead to improvements in searches for doubly and triply charmed baryon

decays, many of which proceed via intermediary Λ+
c → pK−π+ decays with relatively high

branching fractions.
Charmed baryons, while not as much a focus of LHCb activity as searches for

CP -violation and new-physics sensitive rare decays, can still provide a considerable
number of new experimental results and observations. These can not only inform the
theory community in their modelling of heavy-quark hadronisation, but provide robust
checks against the predictions of the quark model, the CKM matrix, and the Standard
Model in general.

1.5 Summary

The Standard Model of particle physics has enjoyed unparalleled success in describing the
fundamental constituents of the universe. We have outlined the concepts underpinning
the SM, and given a brief description of its mathematical formalism. We have discussed
the quark model, with particular emphasis on the multiplets of baryons comprised of the
four lightest quarks predicted in the SU(4) formalism. We have described the mechanisms
of quark mixing, and shown how the CKM matrix gives rise to the suppression and
enhancement of certain weak decays of heavy-flavour hadrons. A summary of recent
theoretical and experimental results on charmed baryons was given, remarking on a variety
of open questions in the field of charmed baryon spectroscopy. We concluded with a
motivation of an analysis of the relative branching fractions of Λ+

c → phh′ decays at LHCb.
This analysis was conducted by the candidate, with the experimental methods outlined in
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Chapters 4 – 5, with the results given in Chapter 6.
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Chapter 2

The LHCb experiment at the LHC

The LHCb beauty (LHCb) experiment at the Large Hadron Collider (LHC) is a dedicated
forward-arm spectrometer designed to conduct precision heavy-flavour physics measure-
ments. We first describe the LHC accelerator complex, and the conditions under which the
LHCb experiment gathers data. We then provide a description of the detector, including
all subsystems necessary to its operation. This chapter concludes with a discussion of the
LHCb trigger system.

2.1 The Large Hadron Collider

The CERN accelerator complex is home to the LHC collider, an accelerator with the
highest centre-of-mass energy to date, with a nominal centre of mass energy (

√
s) for p-p

collisions of 14 TeV. 1

The protons accelerated by the collider originate from a source of hydrogen gas,
progressing through a series of accelerators at the CERN site as depicted in Figure 2.1.
The hydrogen gas is then ionised through the application of an electric field, and the
resultant protons accelerated to 50 MeV by Linac2, which uses radio frequency (RF)
cavities to impart energy to the protons. Protons from pulses of up to 100 ms are injected
into the Proton Synchrotron Booster (PSB), which is composed of four superimposed
synchrotron rings that accelerate the protons to 1.4 GeV.

The PSB then injects the protons into the Proton Synchrotron (PS), which accelerates
the protons to 25 GeV. The protons are then injected into the Super Proton Synchrotron

1The LHC has not yet achieved 14 TeV collisions. For 2010–2011 the collider ran at
√
s = 7TeV, and

at
√
s = 8 TeV in 2012.
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Figure 2.1: The LHC accelerator complex. Reproduced from [93].

(SPS), accelerating the protons to 450 GeV. Finally, the protons are then injected into
the LHC collider and divided into two beams circulating in opposite directions.

The protons travel through the LHC in a vacuum of better than 10−8 mbar. The
accelerator utilises 1232 copper-clad niobium–titanium dipole magnets to curve the protons
around the ring, each of which produce a peak magnetic field of 8.4 T when the protons
reach 7 TeV. The bunches of protons are focussed by 392 quadrupole magnets. The
magnets are cooled to a temperature of 1.9 K to a super-conducting state through the use
of liquid helium. Sixteen RF cavities accelerate the protons from their injection energy to
the required

√
s, and are housed in cryomodules that cool their temperature lower than

4.5 K. Full details of the LHC design are provided in [94].
There are four detectors in which the beams collide, the general purpose detectors

CMS [95] and ATLAS [96], the heavy-ion optimised ALICE [97], and LHCb. Amongst their
aims are the discovery of new particles, particularly the previously unobserved particles
predicted by Higgs theory and supersymmetry, precision measurements of Standard Model
quantities and searches for new physics outside of the Standard Model.

The LHC first successfully collided 3.5 TeV beams in March 2010, breaking the record
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for highest energy particle collision previously held by Fermilab’s TeVatron at 1.96 TeV.
This record was again broken in 2012 as the LHC ramped up to 4 TeV beams for its 2012
run. Data taking at this energy continued until the end of 2012, when the collider was
shut down to enable upgrades to take the LHC to its design luminosity and beam energy.
In 2015 data taking will begin at beam energies of 6.5 TeV enabling even higher energy
scales to be explored.

The LHCb experiment has gathered large volumes of data under varying operating
conditions in 2010, 2011 and 2012. In 2010 an integrated luminosity

∫
L = 0.04 fb−1

at
√
s = 7 TeV was recorded. In 2011

∫
L = 1.10 fb−1 at

√
s = 7 TeV was recorded,

with an instantaneous luminosity twice that of the nominal design value. In 2012 the
centre-of-mass energy was increased to

√
s = 8 TeV, with

∫
L = 2.08 fb−1 recorded. These

operating conditions over the years are summarised in Table 2.1. The nominal design
value for the average number of p – p interactions per visible bunch crossing µ = 0.4 was
chosen to be low to allow a sufficiently clean environment for the event reconstruction due
to the planned 25 ns interval between bunch crossings. The LHC was instead operated
with a bunch spacing of 50 ns, such that the trigger and reconstruction software was able
to function in a higher pileup environment. The recorded luminosity for each year as
a function of time is shown in Figure 2.2, along with the delivered absolute luminosity
in 2012. The data-taking efficiency, the ratio of recorded luminosity over the delivered
luminosity, has been around 90 % throughout operation.

Year
√
s [TeV ] Instantaneous L [ cm2 s−1 ] Bunches µ

2010 7 1× 1032 344 0.5 – 2.5
2011 7 4× 1032 1380 1.5
2012 8 4× 1032 1380 1.6
Nominal 14 2× 1032 2808 0.4

Table 2.1: The LHCb running conditions in 2010, 2011, 2012 and the nominal conditions. The
pileup, µ, is the average number of p – p collisions in each visible bunch crossing.

2.2 The LHCb detector

The LHCb detector [98] is a dedicated heavy-flavour forward-arm spectrometer operating
at the LHC. Its physics aspirations include precision measurements of CP-violation, the
search for rare heavy-flavour decays and to search for indications of new physics beyond
the Standard Model. The key aspects of the detector’s design are:
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Figure 2.2: The recorded integrated luminosity at LHCb for 2010, 2011 and 2012 as a function
of time. The delivered luminosity in 2012 is also given, demonstrating the 90 % data-taking
efficiency achieved. From the LHCb collaboration.

• A powerful discrimination of secondary vertices from the decays of heavy-flavour
particles produced in the primary interaction. Heavy flavour particles typically live
long enough to fly around 1 cm from the location of the primary interaction. LHCb
exploits a high-quality vertex resolution to isolate these particles from the production
of lighter hadrons, which are of limited physics interest. The tracking system at
LHCb provides a lifetime resolution of the order of 50 fs, precise enough to enable
the study of the rapidly oscillating B0

s meson.

• The discrimination of interesting signals from the high backgrounds present in a
hadronic production environment requires a precise mass resolution, which in turn
requires a precise momentum resolution. The tracking system at LHCb provides a
momentum resolution of δp/p ≈ 0.4 – 0.6 %, which for example in the case of the
decay B0

s→ D+
s K

− provides a mass resolution of 16 MeV/c2 [99].

• Many decays of heavy-flavour hadrons of particular interest have a variety of topo-
logically identical final states, obeying different CP symmetries. The discrimination
of these final states is vital to LHCb’s goal to study CP-violation in the beauty and
charm sectors, and also key to the search for rare decays such as B0

s→ µ+µ−. The
discrimination between different species of charged particle is therefore of crucial
importance. The particle identification (PID) system at LHCb is able to provide
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strong discrimination over the momentum range 1 – 100 GeV.

The major production processes underlying the production of heavy quarks at the
LHC are gluon – gluon fusion and quark – antiquark annihilation to produce quark pairs
of cc and bb. The low mass of charm and beauty quarks relative to the momentum of the
partons in hard scattering processes result in cc and bb being produced dominantly in
a highly boosted region. The LHCb detector uses a right-handed Cartesian coordinate
system, with the z-axis pointing along the beampipe, the y-axis defined as vertical and
the x-axis horizontal. The detector’s acceptance lies only in the forward region, covering
an angle with respect to the z-axis 10 mrad to 250 (300) mrad vertical (horizontal). The
angular production of bb pairs at LHCb is shown in Figure 2.3 in terms of the angles
between the b and b momenta and the z-axis. This demonstrates that even with a low
fraction of overall coverage around the interaction region the detector is still able to detect
27 % of b and b production, with 25 % of bb pairs falling in the detector acceptance.
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Figure 2.3: The angular production of bb at LHCb for
√
s = 7 TeV collisions. Shown in red is

the LHCb acceptance. From the LHCb collaboration.
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A vertical cross-section of the LHCb detector is given in Figure 2.4. The proton
collisions take place at z = 0 within the VErtex LOcator (VELO). Particles travelling
within the acceptance then traverse the first of two Ring-Imaging Cherenkov detectors
(RICH) before passing through the Tracker Turicensis (TT). The particles then pass
through the magnet and three tracking stations (T1 – T3) before traversing the second
RICH detector. We note that points that are located at relatively higher positions in z than
some other reference point are said to be “downstream” of the reference point, while points
with lower z are “upstream” of the reference point. The muon and calorimetry systems are
the furthest components from the interaction point. Each of these subsystems will now be
detailed, collected loosely into the tracking, the RICH detectors, the calorimetry, muon
system and the trigger.

Figure 2.4: The vertical cross section of the LHCb detector. The projection is in the y z plane at
x = 0. From the LHCb collaboration.
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2.2.1 Tracking

The tracking of particles at LHCb is provided by the VELO, the four tracking stations
and the dipole magnet. The tracking system has the job of reconstructing the trajectory
of particles traversing the detector with a high spatial resolution and to determine their
momenta. Powerful tracking is key to the acquisition of precise measurements of particle
masses and lifetimes, and is one of the cornerstones of the physics programme at LHCb.

VELO

The VELO is a silicon microstrip detector with the job of locating primary vertices (PV)
from p – p collisions and secondary vertices (SV) from the decays of long lived heavy
flavour hadrons. The majority of beauty mesons in the LHCb acceptance produced in
p-p collisions fly very close to the beam axis, therefore the VELO has been designed to
operate as close to the beamline as possible. The VELO is composed of two halves so that
the detector may be retracted from the beamline during beam injection and then centred
around the beam when stable beams are circulated. During beam injection the beams are
unstable, and the VELO must be retracted by 29 mm from the beam axis during fills.
Under data-taking conditions the VELO is closed around the beam with a circular 7 mm

aperture in the centre to allow the LHC beams to pass through without interacting with
and damaging the detector material. A top-down cross section of the VELO is given in
Figure 2.5.

Each half is composed of 21 modules, each housing two semi-circular sensors with a
cylindrical geometry, with a R sensor to measure the radial coordinate of tracks and a φ
sensor to measure the azimuthal coordinate. With this geometry the VELO can be used in
the trigger to provide a first reconstruction of tracks and vertices using 2-dimensional R – z
tracking. This allows high impact parameter (IP) tracks, those tracks with a large distance
of closest approach with respect to the reconstructed primary vertex, to be identified early
in the reconstruction procedure. The modules are bunched together more closely near the
interaction region to ensure a low extrapolation distance from the first registered hit of a
track to its primary vertex for optimum IP and PV resolution.

Schematics of the r and φ sensors are given in Figure 2.6 The VELO sensors are made
from 300 µm thick silicon, with active areas from a radius of 8 mm to 42 mm. The sensors
are subdivided into four 45◦ sections to reduce both the capacitance of the sensors and
their occupancy. For the R sensors, the strip pitch, or the distance between sensor strips,
is at a minimum of 38 µm in the central region, which increases linearly to 101.6 µm.
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Figure 2.5: A cross section in the x z plane of the VELO stations. Shown bottom is a diagram of
a VELO stations closed, left, and open. From the LHCb collaboration.

This gradient ensures that measurements along the track contribute to the precision of
the IP with approximately equal weights. The φ sensors are subdivided into an inner and
outer region to keep the strip occupancy in the outer region sufficiently low. The inner
strips have a pitch of 78.3 µm, running from the innermost point of the sensor to a radius
of 17.25 mm, where the outer strips begin. The outer strips have a pitch roughly half that
of the inner strips of 39.8 µm. The inner strips are skewed roughly 20◦ to the radial and
the outer strips are skewed roughly 10◦ from the radial in the opposite direction. Adjacent
φ sensors have the opposite skew, providing adjacent stations with an enhanced ability to
suppress the reconstuction of ghost tracks by providing a stereo view.

The halves are encased in a 300 µm aluminium foil to shield the detector against
radiofrequency pickup from the beam and to protect the LHC vacuum from outgassing of
the detector modules. The foil must be thin to minimise multiple scattering, making it
subject to deformations under pressure differences of as low as 20 mbar. The pressure in
the LHC vacuum is kept better than 10−8 mbar, while the VELO is kept in a separate
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Figure 2.6: Schematic of the VELO R and φ sensors. The routing lines are oriented perpendicularly
to the strips in the R sensors and parallel to the strips in the φ sensors. From the LHCb
collaboration.

vacuum of approximately 10−7 mbar to prevent foil deformation. The foil is corrugated
such that the modules in each half can overlap in order to achieve a gapless acceptance in
φ. This overlap region is also of use in the relative alignment of the two VELO halves.
The RF foil contributes the majority of the VELO’s material budget, which is on average
17.5 % of a radiation length in total.

The impact parameter as a function of 1/pT and the vertex resolution as a function of
event multiplicity are shown in Figure 2.7. For high transverse-momentum tracks an IP

resolution of as low as 11.6 µm may be achieved. The vertex resolution for a typical event
multiplicity is between 10 – 20 µm, which is the most precise vertex location of any LHC
experiment.

Tracking detectors

The tracking detector system is composed of the Tracker Turicensis (TT) [101], and the
three tracking stations located downstream of the magnet (T1 – T3) [102]. The inner
regions of T1 – T3 and the TT are subject to a much higher particle flux than the outer
regions of the detector, and are therefore built with the same radiation-hard silicon strip
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Figure 2.7: The VELO IPx resolution as a function of 1/pT (a) and PV vertex resolution in x and
y as a function of event multiplicity (b), taken with 2012 data. The vertex resolution achieved is
the most powerful at the LHC. From [100].

design with high granularity for efficient pattern reconstruction. These are collectively
referred to as the Silicon Tracker (ST). The outer regions of T1 – T3 are referred to as the
Outer Tracker (OT), and are drift-time detectors. The division between the inner and
outer trackers throughout T1 – T3 is shown in Figure 2.8.

Figure 2.8: The division of the inner and outer trackers in the T1 – T3 stations. From the LHCb
collaboration.

The TT is shown in Figure 2.9. It is composed of four layers of 500 µm thick silicon
microstrip sensors with a 183 µm strip pitch. The TT is 1.5 m wide and 1.3 m tall
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covering the LHCb acceptance. The first and fourth layers have their sensors oriented
vertically while the middle two sensors are oriented at ± 5 ◦ from horizontal in opposing
directions, to give a (x - u - v - x) layout, providing a stereo view of particles traversing the
detector and allowing all cooling and suport infrastructure for the detector to be located
outside of the active area and the detector acceptance. Each detection layer is separated
by approximately 27 cm in z.

Figure 2.9: Schematic of the Tracker Turicensis. From the LHCb collaboration.

The inner tracker stations are located in the high luminosity region close to the
beampipe, and their design must maintain a low occupancy for an effective reconstruction.
The stations are composed of four detector boxes, two located above and two located
adjacent to the beampipe. The stations are arranged in a cross shape as depicted in
Figure 2.10, with a greater horizontal coverage than vertical to account for the bending of
particles in the dipole magnetic field.

The outer tracker is a drift-time detector, and comprises the remainder of the T1 –
T3 stations [103]. The detector modules are straw-tubes with a gas-tight design, each
comprising two monolayers of 4.9 mm drift-tubes. Each of these is filled with a gas mixture
of 70 % Argon and 30 % CO2 that becomes ionised when charged particles traverse the
drift-tube. The tubes are constructed by winding two thin foil strips together, which have
a voltage applied upon them to form an anode and cathode. The ionisation of the gas
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Figure 2.10: Schematic of the inner tracker layout. From the LHCb collaboration.

releases electrons which fly to the cathode, recording a signal. The specific gas mixture is
chosen such that a low drift-time of 50 ns, and a precise spatial drift-resolution of 200 µm,
can be achieved. Like the TT modules, the OT modules in each tracker station are also
aligned in a (x - u - v - x) formation, with the outer modules layered vertically and the
inner modules tilted by ± 5 ◦ providing a stereo view of particle trajectories. The total
material budget of the Outer Tracker is 9.6 % of X0.

Dipole magnet

The detector makes use of a warm dipole magnet to bend charged tracks for purposes
of momentum measurements [104]. Its design weighed the need for a high overall field
integral and for a sizeable field integral between the VELO and TT with the requirement
that the field inside the RICH detectors be negligible. The magnet is comprised of a
1500 ton iron yoke and two 27 ton Al − 99.7 coil in a saddle-shape. The magnet has
an integrated field strength of approximately 4 Tm and a peak field strength of 1.1 T.
A precise knowledge of the magnetic field is required to ensure the desired momentum
resolution can be achieved. The field integral was measured through the use of an array of
Hall probes to a precision of order 10−4 to this end. The main component of the magnetic
field lies in the y-axis, and the manget’s polarity is periodically flipped such that a variety
of systematic uncertainties in charged particle tracking may be understood. A schematic
of the LHCb magnet is given in Figure 2.11.

2.2.2 Particle Identification

The precise determination of the identity of charged particles traversing the detector is of
key importance to the physics aspirations of the experiment. This is accomplished through
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Figure 2.11: Schematic of the LHCb magnet. From the LHCb collaboration.

the use of two ring imaging Cherenkov detectors (RICH), which provide LHCb with strong
particle identification (PID). RICH1 is located immediately downstream of the VELO
while RICH2 is located downstream of T3. RICH1 contains two radiator materials; an
aerogel block which provides particle discrimination in the range 1 – 15 GeV/c and a gas
radiator providing discrimination up to momenta of 60 GeV/c. RICH2 contains a CF4 gas
radiator which provides discrimination for particles up to and above 100 GeV/c.

The detector’s functionality exploits the emission of Cherenkov radiation from charged
particles when they traverse a medium with a speed faster than the phase velocity of light
in the medium. The light is emitted in a cone with a Chernenkov angle cos θC given by:

cos θC =
1

nβ
(2.1)

where n is the refractive index of the material and β is the ratio of the particle’s velocity
over the speed of light, v/c. By utilising the expression:

β =
pc

E
(2.2)
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it is possible to re-express the Cherenkov angle in terms of the particle energy:

cos θC =
E

npc
(2.3)

which can in turn be expressed in the rest mass of the emitting particle:

cos θC =
1

n

√
1 +

(
mc

p

)2

. (2.4)

If the momentum and Cherenkov angle of a particle can be measured, then the rest mass
of the particle can be calculated.

The candidate’s work in PID at low momentum and in developing new PID calibration
samples necessitates a thorough discussion of the RICH detectors and their reconstruction
algorithms. As such, we present this information more thoroughly in Section 3.2 as an
introduction to the work conducted.

2.2.3 Calorimetry

The calorimetry at LHCb has multiple functionalities. It contributes to the PID of
hadrons, electrons and photons, and enables the identification of high transverse energy
particles, which are characteristic signatures of heavy-flavour decays. It also provides
measurements of the energies and positions of particles. The calorimeter system is located
immediately downstream of RICH2. Both calorimeters function by absorbing all energy of
incident particles through interaction with the calorimeter material, producing cascade
showers of other particles in the calorimetric system. From upstream to downstream, the
calorimeter is comprised of a scintillator pad detector (SPD), a preshower detector (PS),
the electromagnetic calorimeter (ECAL) and the hadronic calorimeter (HCAL).

All calorimeters have a similar operation, in which scintillation light is transferred to
PhotoMultipliers (PMT) through wavelength-shifting (WLS) fibres. While the fibres for
the SPD and PS are read out with the use of multianode photomultiplier tubes (MAPMT),
those in the ECAL and HCAL are read out with individual phototubes.

The SPD and PS are comprised of a 15 mm lead converter of 2.5 X0 located between
two planes of high-granularity scintillator pads, with 12032 detection channels in total. The
detector’s active area is 7.6 m wide and 6.2 m tall. Electrons possess electric charge, and
so will interact with the SPD producing an electromagnetic shower, whereas the neutral
photons may only interact through their Bremsstrahlung emission, which has a much
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lower probability of occurring in the SPD. The majority of photons instead convert in
the iron prior to entering the PS, providing a differentiation between charged and neutral
electromagnetic objects.

The ECAL utilises 66 modules, each with 2 mm of lead in front of 4 mm of scintillator
material to capture the shower produced in the lead. The ECAL’s thickness corresponds
to 25 X0, where X0 is the radiation length, to ensure that all energy from incident photons
and electrons is captured. The HCAL modules are also comprised of alternating lead and
scintillator tiles, but unlike the ECAL they are aligned in parallel to the z-axis. The HCAL
is 5.6 λint deep, where λint is the hadronic interaction length. To account for the higher
multiplicity environments close to the beampipe, and to maintain a manageable sensor
occupancy, both the HCAL and ECAL are segmented such that the inner regions of the
detector have higher granularity, as shown in Figure 2.12. The energy resolution achieved
in the ECAL is 8%√

E( GeV)

⊕
0.8 %, while that achieved in the HCAL is 69%√

E( GeV)

⊕
9 %.

(a) (b)

Figure 2.12: The segmentation of the SPD, PS and ECAL (a) and HCAL (b) calorimetry. From
the LHCb collaboration.

2.2.4 Muon system

A high detection efficiency for muons is of key importance to the physics programme at
LHCb. They are part of the final states of many decays that are sensitive to CP-violation,
such as B0

s→ J/ψφ. They are of use in tagging the flavours at production of neutral
heavy-flavour mesons, which enables studies of meson oscillation. Finally, they are present
in the final states of a number of rare decay processes, in particular the new-physics
sensitive B→ µ+µ− decays.

The muon system is comprised of five rectangular stations (M1 – M5) on the beam
axis. The system has an angular acceptance of 20 – 306 (16 – 258) mrad in the horizontal
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(vertical) planes. The resultant acceptance for muons from semileptonic decays of b-hadrons
is approximately 20 % [98]. The M2 – M5 stations are located at the most downstream
part of the detector, between which are sandwiched iron absorbers to absorb any remaining
hadrons and electrons to isolate the muons. The M1 station is located in front of the
calorimetry, and is used to improve measurements of pT in the lowest trigger levels. The
total depth of the muon system corresponds to approximately 20 interaction lengths, and
as such, muons must have a minimum momentum of 6 GeV/c to traverse all five stations.

A side view of the muon system is provided in Figure 2.13. The stations are divided
into four regions of roughly equivalent particle flux and occupancy, labelled R1 – R4. The
detector regions are comprised of multi-wire proportional chambers (MWPC) in all but
the inner region of M1, where the particle flux is above the limit for ageing via radiation
damage. In this region triple-GEM detectors are utilised instead. The muon trigger
algorithm requires all five stations to record hits in a track, and so the detection efficiency
in each station must be excellent, with the timing resolution of 25 ns to unambiguously
determine from which bunch crossing the track originated.

To this end, a MWPC design is adopted using a wire plane of 2 mm spacing, symmet-
rically placed in a 5 mm gas gap. A fast, non-flammable gas mixture of Ar / CO2 / CF4

in a mixture ratio of (40:55:5) is used. The logical OR of two adjacent gas gaps is taken,
resulting in an efficiency better then 95 % for a time of 20 ns, with an order 105 gain
acquired through the application of a voltage of 2700 V [105].
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Figure 2.13: A side view of the muon system, indicating the four segmented regions of approxi-
mately equal occupancy. From the LHCb collaboration.
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2.3 The LHCb trigger

The maximum bunch collision frequency at the LHC is 40 MHz, while only 15 % of these
events will include a B meson with all decay products produced in the detector acceptance.
At the LHCb interaction point the proton beams are defocussed such that the number of
collisions per bunch is lower than is the case at the GPDs, but to record each event would
still amount to an overwhelming accumulation of data. For the reasons outlined, the rate
of visible interactions at LHCb is reduced to 10 MHz. It is the trigger’s job to reduce
this rate to about 5 kHz, which can be written to storage for physics analysis. This is
accomplished via the use of a two-stage hardware and software trigger [106]. The Level-0
(L0) trigger is a hardware trigger, built with custom electronics, while the High Level
Trigger (HLT) is a software trigger, and is executed on a computer farm. A simplified
diagram of the LHCb trigger schema is shown in Figure 2.14.

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

29000 Logical CPU cores

Offline reconstruction tuned to trigger 
time constraints

Mixture of exclusive and inclusive 
selection algorithms

2 kHz 
Inclusive

Topological

5 kHz Rate to storage
2 kHz 

Inclusive/
Exclusive 

Charm

1 kHz
Muon and 
DiMuon

Figure 2.14: The schema of the LHCb trigger, showing the processing of events through the
various alleys of the L0 and HLT levels. From the LHCb collaboration.

2.3.1 Level 0 trigger

The L0 trigger must bring the event rate from 10 MHz to 1 MHz, the rate at which the
full event can be read out to perform a more sophisticated event selection. It is fully
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implemented in hardware, and runs synchronously with the 40 MHz bunch crossing of the
LHC. Heavy flavour hadrons decay into particles that typically have a significantly higher
transverse energy and momentum than particles produced in soft interactions, which are
not of interest. The L0 trigger exploits this by attempting to reconstruct the highest pT

hadron, electron and photon clusters (formed from the sum of 2× 2 adjacent calorimeter
cells), and the two highest pT muons in the muon system.

A pile-up system in the VELO also creates an estimate for the number of p – p collisions
in the bunch crossing. Together with an estimate of the number of tracks in the event taken
from the number of hits in the SPD, this information is used to reject events that may
have been triggered due to a large number of combinatorics. The muon chambers are able
to provide a first reconstruction with a transverse momentum resolution of approximately
20 %. The tracks corresponding to the calorimeter clusters are identified with information
from the SPD, PS, ECAL and HCAL as either electrons, photons or hadrons.

The two muon candidates and the electron, hadron and photon clusters with the highest
energy are checked against a series of simple logical cuts. The results of the individual
decisions are passed onto the Level-0 Decision Unit (DU), which arrives at the final L0
trigger decision for the bunch crossing. Provided one of the requirements are met, the
event is sent to the HLT. The time between the p – p interaction and the receipt of the
decision by the front-end electronics is fixed to 4 µs, and is independent of event-variable
quantities like the detector occupancy. The L0 decision must then be reached within
2 µs. As an example, the efficiency of certain L0 requirements with respect to the decay
products of reconstructed B0

s→ J/ψφ as a function of the pT of the B meson are shown
in Figure 2.15. Taking the logical OR of the muon and dimuon trigger decisions, the
efficiency across the full pT range exceeds 75 %.

2.3.2 High Level Trigger

The output of the L0 trigger is passed to the Event Filter Farm (EFF), comprised of up to
2000 computing nodes, on which the HLT C++ applications run. The HLT has access to
the full information on the event, but given the high 1 MHz input it is more practical to
make a decision using only part of the event data. The HLT is split into two stages. HLT1
is responsible for reconstructing charged tracks in the VELO and trackers that match the
objects which fired the L0 trigger, or for photons and pions to verify the lack of a charged
track. HLT1 reduces the retention rate of events to approximately 30 kHz, allowing the
HLT2 component of the trigger to perform a full reconstruction on the surviving events.
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HLT2 comprises a variety of exclusive and inclusive lines, which impose a variety of
selection criteria on the candidates surviving HLT1. These most commonly include cuts
on the invariant mass of reconstructed heavy-flavour hadrons, quality requirements on
reconstructed secondary vertices and pointing directions on the reconstructed hadrons
with respect to the location of the related primary interaction. Information from the RICH
PID discrimination may also be used at this juncture. 2

Shown in Figure 2.16 are the efficiencies of various D decays with respect to an inclusive
charm hadron HLT2 trigger line as a function of the D lifetime. Despite being optimised
for the decays of bb pairs, these high efficiencies demonstrate that LHCb successfully
acquires information on a considerable number of charm hadron decays.

For many physics analyses at LHCb the efficiency of a trigger selection must be known
to high precision. Finding the absolute efficiency of the entire trigger’s selection of a decay
mode is often problematic. It can also be advantageous to assign trigger requirements
based on individual tracks in the event. We therefore classify all reconstructed tracks
and particles resulting from combinations of such tracks as dependent or independent of
every algorithm in the trigger, at both L0 and HLT. If a given signal candidate, either a
track or some reconstructed heavy-flavour particle, is sufficient to trigger the event then
the signal is classed as Triggered On Signal (TOS). If the signal candidate falls in an

2PID information has not yet been used in the trigger for Run I, but will be used in 2015 for Run II.
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event which could have been triggered by other tracks or candidates in the event it is
classified as Trigger Independently of Signal (TIS). Events can be both TOS and TIS
simultaneously, and are designated as TIS and TOS with respect to each trigger line in
the L0 and HLT. In the candidate’s studies of Λ+

c → phh′ decays, which are detailed in
Chapter 4, the classification of promptly-selected events as TIS with respect to a suite of
HLT lines ensures a convenient trigger selection efficiency cancellation between the decay
modes under consideration.
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Figure 2.16: The HLT2 trigger efficiency with respect to a variety of hadronic D decays, as a
function of the D lifetime. The TOS efficiency is the efficiency of the trigger line when applied to
D candidate specifically, ignoring the rest of the event. From [107].

2.4 Simulation of particle production and decay

It is of utmost importance that a robust and accurate simulation of particle production
and decay at LHCb is available, allowing the collaboration to better understand a wide
variety of detector and physics effects. This is performed in the Gauss package, detailed
in [108], [109]. The simulation is broadly split into two phases, the generation of the
primary interaction and decaying particles, and the transport of the particles through the
detector.

For the former the HepMC event record [110] is utilised as a format for the generated
event. The primary interaction is simulated with the Pythia general purpose gener-
ator [111], simulating the p-p collision and the production of particles. The Photos
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package [112] is interfaced to Pythia to account for Final State Radiation (FSR). To
account for complex and time dependent decay properties of heavy flavour neutral mesons,
the EvtGen [113] package, designed by the BaBar collaboration [114] for the study
of heavy-flavour meson decays, is utilised. Finally, the simulation of the particle inter-
action with the detector, and the approximation of the detector itself, are handled by
Geant4 [115], [116].
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Chapter 3

Proton identification at low momentum
and PID calibration

Key to the heavy-flavour physics aspirations of LHCb is the ability to accurately identify
final state particles. This is accomplished with the use of the RICH particle identification
(PID) system. In this chapter, the need for powerful PID at LHCb is first outlined in
Section 3.1. A brief overview of the RICH technical specifications follows in Section 3.2.
The reconstruction algorithms used in the RICH to assign particle hypotheses are then
detailed in Section 3.3. The candidate’s work on using the particle hypothesis information
to measure the performance of the RICH aerogel is then given in Section 3.6. A data-driven
correction to PID selection efficiency is commonly used on LHCb, which uses data of
decays that can be reconstructed unambiguously through the use of kinematic information
alone and without the use of PID discriminants. This technique is described in detail in
Section 3.4. The candidate’s work on preparing a sample of proton tracks from Λ+

c decays
is then given in Section 3.5.

3.1 Charged particle identification at LHCb

The need to accurately identify charged particles produced in heavy-flavour decays or
from the underlying event is of paramount importance to the physics goals of LHCb. The
majority of particles produced in the proton – proton collisions are pions, while many
decays relevant to heavy-flavour physics contain pions, kaons and protons in the final
state. In each event, typically of the order of one hundred tracks are reconstructed. The
ability to distinguish between these particle hypotheses is vital to suppressing combinatoric
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backgrounds in reconstructing the masses of heavy-flavour particles.
The ability to discriminate between different species of charged particles is also required

to distinguish between topologically identical decays with different daughters. Without PID
discrimination, any signal extraction using kinemtic and vertex information is a sum over
all possible modes. An example of this is given in Figure 3.1 from the decay B0→ π+π−,
which is indistinguishable from all other B→ h+h′− modes without PID information. This
is especially crucial for measurements of CP -violation, where the different final states
possess different CP symmetries. Also of interest to CP -violation studies is the accurate
tagging of neutral meson decays, where knowledge of the meson flavour at production is
required. This may be accomplished in the identification of associated-production particles.
By exploiting the high particle identification efficiencies over a wide momentum range of
the RICH system, decay modes of interest may be isolated and studied more effectively.
The LHCb trigger system [106] also makes use of the charged particle identification systems.
The RICH reconstruction is fast enough so that it can be deployed online, and as such can
be used to reduce the trigger retention rate while improving the signal purity for a variety
of modes.

Figure 3.1: The effects of applying PID selection on the mass spectrum of B→ h+h′− decays,
from [117]. Shown left is the reconstructed B0→ π+π− mass spectrum before PID selection,
right is after PID selection. The correctly identified signal component (dashed blue) is much
more emphasised after selection. Of the mis-reconstructed backgrounds (B0→ K+π− dotted red,
B0
s→ K+K− solid yellow, B0 → 3-body dashed orange, B0

s→ π+K− solid brown, Λ0
b→ pK−

solid purple, Λ0
b→ pπ− solid green), all but two are eliminated entirely. The combinatoric

background (solid grey) is also markedly reduced.
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3.2 The RICH system

There is a need to accurately identify both high-momentum charged particles from heavy
flavour decays and low-momentum particles from associated production for tagging. As such
the RICH system is composed of two detectors to cover the full momentum range. RICH1
is located upstream of the magnet and is capable of PID in the range 1 – 60 GeV/c, and has
aerogel and C4F10 radiators. RICH2 is located downstream of the magnet, and contains a
CF4 radiator which covers the momentum range from 15 – 100 GeV/c. RICH1 covers the
acceptance range 25 mrad – 300 mrad (horizontal)/ 250 mrad (vertical), while RICH2
covers the narrower acceptance range of 15 mrad – 120 mrad (horizontal)/ 100 mrad (ver-
tical) corresponding to higher momentum tracks. In each, the Cherenkov light is focussed
using both spherical and flat mirrors and guided out of the LHCb acceptance and onto
Hybrid Photon Detectors (HPDs) which are capable of detecting photons with wavelength
of 200 – 600 nm.

3.2.1 RICH1

The RICH1 detector is immediately downstream of the VELO and immediately upstream
of the Trigger Tracker. It covers the approximate momentum range 1 – 60 GeV/c, and
contains aerogel and C4F10 radiators. Its general design is influenced by the need to
minimise the material budget in the detector acceptance. The total radiation length,
including the radiators of the full RICH1, is 8 % X0. The magnetic field at the detector’s
location is approximately 60 mT, while the HPDs operate at peak efficiency up to 3 mT.
Local MuMetal alloy shields and iron boxes are used to reduce the magnetic field at the
HPD plane to 2.4 mT. A side-view schematic of the RICH1 detector is given in Figure 3.2.

Simulation has been used to optimise the optical design of the detector. Charged tracks
passing through the RICH1 are generated, and Cherenkov photons are emitted uniformly
along the length of the tracks in the radiators. The photons are ray-traced through the
system to the HPDs. The Cherenkov angle at emission is then calculted for each photon
under the assumption that the emission point lies halfway along the track’s path through
the radiator. The error in reconstructed Cherenkov angle due to the true emission point
of the photon along the track is made by design to be smaller than other sources of finite
angular resolution, for example the chromatic dispersion of the radiators. The simulation
also determines the necessary coverage of the HPD planes. Close to full HPD coverage is
required for photons emitted by the gas radiator, while photons emitted from the aerogel
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Figure 3.2: Side-view schematic of the RICH1 detector.

have a HPD coverage of 68 % due to cost restrictions, although this does not affect the
detector performance significantly.

As the spherical mirrors fall within the detector acceptance, minimising the material
budget is a concern. As such, they are made of a carbon fibre reinforced polymer (CFRP)
substrate, keeping their contribution to the material budget below 2 %. There are four
spherical mirrors in the assembly, each with an area of 830 mm by 630 mm projected
into the x – y plane. The reflectivity of the mirrors is improved with thin coatings of Al
(80 nm) and MgF2 (160 nm), such that the reflectivity of glass substrates can be improved
at all wavelengths of interest. The flat mirrors are located outside the detector acceptance,
and so glass can be used in their construction without increasing the material budget. Two
planes are used, one above and one below the beampipe. In each plane, eight 380 mm by
347.5 mm mirrors of Simax glass are used.

The C4F10 gas is contained in a gas enclosure which also provides a light-tight environ-
ment for the optical components. A pressure differential of ± 300 Pa must be maintained
between the gas box and its surroundings. The enclosure’s upstream boundary is attached
to stainless steel bellows 300 µm thick providing a gas-tight seal to the downstream end
of the VELO vacuum tank. The downstream end is bounded by an exit window made of
two 0.5 mm thick CFRP membranes on either side of a 16 mm thick polymethacrylimid
(PMI) foam, which contributes 0.6 % X0 to the material budget. The sides of the enclosure

48



are open, allowing full access to the optical components, and closed by 10 mm thick
aluminium panels. 8 mm thick quartz windows with an antireflective coating allow the
Cherenkov light to reach the HPDs.

The shield boxes are designed with the considerations of maintaining the magnetic field
integral within the fiducial volume, while allowing the HPDs to be sufficiently shielded that
their efficiency is not adversely affected. The HPD planes are located in the upstream tails
of the field, where the field strength is approximately 60 mT, while the HPDs operate at
full efficiency in magnetic fields up to a strength of 3 mT. The shield is constructed from
iron plates, with final dimensions of 1950 mm by 4000 mm by 1175 mm. Measurements
made while the magnetic field is at full strength show the field at the HPD plane show that
the field is reduced to 2.4 mT, and the field integral between the IP and TT is 0.12 Tm.
Each shield box weighs 75 kN while the forces on the box at full field are approximately
50 kN. The design of the shield and its mountings ensures that the HPD displacement is
no greater than 0.5 mm while the magnet is operational.

3.2.2 RICH2

The RICH2 detector is responsible for PID at high momentum, and is located downstream
of the final tracking station and upstream of the first muon station. The detector uses
a CF4 radiator, which provides particle discrimination between 15 – 100 GeV/c in the
acceptance ± 120 mrad horizontal and ± 100 mrad vertical, with a minimum radial
acceptance of 15 mrad required by the thermal insulation around the beampipe. The
detector is oriented with the mirrors and HPDs offset horizontally. Like the RICH1, the
spherical mirrors must be located within the detector acceptance, while the flat mirrors
and HPDs are located outwith. The radiation length of the detector, including the radiator,
is 15 % X0. A schematic of the detector is given in Figure 3.3.

As for the RICH1, the optical layout is optimised with simulation. The emission-point
error is found to be small compared to other sources of finite angular resolution, including
the dominant contribution from the chromatic dispersion of the CF4, which results in an
uncertainty of 0.42 mrad. The spherical and flat mirrors are composed of 6 mm thick
Simax glass substrate.

The gas enclosure has a volume of 95 m3. The upstream boundary is an entrance
window made of two 1 mm thick carbon fibre reinforced epoxy membranes bounding
28 mm thick PMI foam. The downstream boundary is the exit window, with two 1 mm

thick aluminium membranes bounding 30 mm PMI foam. Their contributions to the

49



120mrad

Flat mirror

Spherical mirror

Central tube

Quartz plane

Magnetic shieldingH
P
D

e
n
clo
su
re

2.4 m

300
mrad

CF
4

Figure 3.3: Top-down schematic of the RICH2 detector.

material budget are 1 % X0 and 2.5 % X0 respectively. As with RICH1, quartz windows
with antireflective coating separate the HPDs from the gas enclosure. The magnetic field
in the region of the RICH2 HPD planes is complex, with a field strength of more than
15 mT. The magnetic shiedling is performed with the use of boxes made from 60 mm thick
iron plates. The measured field at the locations of the HPD planes is from 0.2 – 0.6 mT,
allowing the HPDs to operate at peak efficiency.

3.2.3 Radiators

In order to provide particle identification in the full momentum range 2 – 100 GeV/c,
three radiators are used in the RICH detectors. The aerogel and C4F10 are housed in
RICH1, providing discrimination from 2 – 60 GeV/c. The CF4 is housed in RICH2, and
provides discrimination from 15 – 100 GeV/c. Particle discrimination for all common
charged particles produced in LHCb collisions is required. The Cherenkov angles against
track momentum for electrons, muons, kaons, protons and pions are given in Figure 3.4
for each radiator. The different photon emission angles across the full momentum range
allow for discrimination between different charged particle hypotheses.

The range of refractive indices between typical liquids and gases is well covered by
SiO2 aerogel, which has a refractive index which is tuneable between 1.01 – 1.10. Any
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Figure 3.4: Track momentum vs. emitted photon Cherenkov angle for each radidator.

Cherenkov radiator should have minimal scatter of the photons produced by charged
particles passing through their volume. Any such scattering would reduce the precision of
the reconstructed Cherenkov angle, and degrade the imaging quality available at the HPD
plane. The dominant mechanism of scatter at low photon energy is Rayleigh scattering.
As such, the transmission of light T for a given length of radiator L and photon wavelength
λ is well-described by

T = Ae−CL/λ
4

(3.1)

where A is the high-wavelength transmission and C is the clarity coefficient. High purity
aerogel samples with a low clarity coefficienct have been developed for the high multiplicity
LHC environment [118]. The clarity coefficiency of the final aerogel samples used in the
RICH1 detector is below 0.0054 µm4/ cm at λ = 400 nm. A 30 mm glass window is
placed at the downstream end of the aerogel to absorb photons at higher than 3.5 eV,
where the effects of multiple scatter significantly affect the photon resolution.

At this wavelength the refractive index of the material is 1.03. The predicted number
of photo-electrons produced in the aerogel and detected at the HPDs is around 6.8. It
is measured in data in [119], by calculating the distribution of ∆θC = θC − θ0, where θC
is the reconstructed Cherenkov angle and θ0 is the Cherenkov angle which is calculated
using the track momentum and the refractive index of the medium. Taking only those
photoelectron hits falling in a ring of width ± 5 σ of the angular resolution of the system,
the photoelectron yields are measured to be 5.0 ± 3.0 in tagged D0→ π+K− decays and
4.3 ± 0.9 in pp→ ppµ+µ− decays, where the dominant errors are from uncertainties in the
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fit to the ∆θC spectrum and the high background photoelectrons.
The gas radiators were chosen because of the suitability of their refractive indices to

providing discrimination in the momentum range of heavy-flavour decays at LHCb, as
well as their low chromatic dispersion. The RICH1 is filled with 4 cm3 of C4F10 gas, the
RICH2 is filled with 100 m3 of CF4 gas. During operational conditions both are kept at a
relative pressure stability of less than 0.5 mbar. The refractive index of a gas as a function
of wavelength can be taken from a Sellmeier approximation [120]. For the C4F10 gas at a
temperature of 0 ◦C and a pressure of approximately 1 mbar this is

(n− 1)× 106 =
0.25324

73.2− λ−2
(3.2)

and for the CF4 gas is

(n− 1)× 106 =
0.12489

61.8− λ−2
(3.3)

for a wavelength measured in nm. The low chromatic dispersion of the fluorocarbons
results in a very low contribution to the angular resolution of the system.

The presence of water and oxygen in the radiator gases are kept below 200 ppm to
prevent formation of HF. Nitrogen contamination in the radiators has the effect of altering
the refractive indices of the gases and so is kept below 1 %. CO2 is transparent above 180
nm, and so can be used as a pressure balancing gas without affecting the photon yield
significantly. The high price of the fluorocarbons makes a reclamation and purification
system vital to the RICH operation, such that nitrogen contamination can be controlled.
The gas circulation in RICH1 is run in a closed loop, with inline liquifaction to eliminate
volatile impurities and a molecular sieve to eliminate water impurities. In RICH2, the
circulation is also run in a closed loop but without liquefaction, using filters to remove
water impurities. Full information on the reclamation and purification system may be
found in [121].

A Laser Alignment Monitoring System (LAMS) was used to check the stability of
the RICH2 mirrors throughout data taking [122]. It has been shown that the mirror
stability is affected by small temperature variations, but their effect on the Cherenkov
angle reconstruction, of less than 80 mrad, does not affect the RICH performance [123].

3.2.4 Hybrid photon detectors

Once photons are produced in the radiators, their positions must be recorded at the
detection plane. Any photon detection system used in the RICH must satisfy several
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challenging design considerations. The active area of the pixel arrays must be a high
proportion of their surface area, to ensure minimal loss of Cherenkov photons. The
granularity must be sufficiently high that the spatial resolution of the array is high enough
to meet the RICH requirements. In the high luminosity LHCb environment, the detector
must be high speed with a timing resolution of 25 ns. These are all accomplished via
the use of pixel arrays of hybrid photon detectors (HPDs), which have been designed in
collaboration with industry [124].

Figure 3.5: A schematic of a pixel HPD from the RICH detector.

A schematic of an HPD pixel is given in Figure 3.5. Incident photons pass into the
pixels through a 7 mm thick spherical quartz window, with an inner radius of curvature
of 55 mm. A thin multialkali photocathode is coated upon the window’s inner surface.
Photoelectrons are released from the photocathode by the incident photons, which are
then accelerated through the vacuum tube by a high voltage of approximately 20 kV onto
a reverse-biased silicon detector. This produces around 5000 electrons in the silicon per
photon, with an energy of 3.6 eV being required to create an electron-hole pair. The
silicon detector in each tube has 8192 square of area 500 µm × 62.5 µm, in a 32 by 256
array, and during operation groups of 8 pixels are logically “ORed” to make a 32 × 32
array of 500 µm × 500 µm square super-pixels, with no drop in performance compared
to reading out all pixels individually. The HPD tubes are very tightly packed, leading to a
ratio of active to total area of 64 %, and a total area of around 3.5 m2. 196 tubes are used
in the RICH1 and 288 in the RICH2, for a total of 484 HPDs used in the system.

The final quantum efficiency (QE), or ratio of incident photons to converted electrons
produced, is maximal in the HPDs at an incident photon wavelength of 270 nm, with an
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average QE of approximately 31 %. The dark count due to thermionic electron emission
in the photocathode is an important consideration. These have been measured, and
are typically below the specification value of 5 kHz. The vacuum quality is also key to
the HPD operation. The presence of gas atoms in the HPD chambers can result in the
production of ions, which then drift to the photocathode where they release electrons
that are detected several hundered nanoseconds after the arrival of the initial Cherenkov
photon. The ion feedback rate in the testing stage was measured to be lower than the
specification value of 1 %. During operation, outgassing from the detector elements inside
the HPD gradually deteriorates the vacuum. When HPDs reach ion feedback levels of 5 %,
they are replaced. In Run I more than one hundred HPDs have been replaced for this
reason.

3.3 RICH reconstruction and PID discriminant estima-

tors

The job of the reconstruction is to take the information from the RICH detectors and
the tracking system and to identify charged hadrons passing through the RICH. A global
reconstruction algorithm that simultaneously determines the identities of all charged
particles in an event is employed, which culminates in a global likelihood calculation. This
algorithm can successfully account for sources of background, and has a running time
low enough that it may be practically used online. It is desirable to compare particle
hypotheses for each track, such that particles are assigned not just a mass hypothesis
but relative strengths for each charged particle hypothesis. These are assigned for each
charged track in the event such that the purity of any PID selection can be varied.

3.3.1 Global Cherenkov detector reconstruction

A typical Cherenkov detector reconstruction algorithm first determines from which track
detected photons were emitted. Then, the photons associated with each track are fitted
wth a ring of width determined by the angular resolution of the photon detector. The
Cherenkov angle of the ring is then calculated, and the mass of the original particle
may be extracted from this angle and momentum information from a tracking system.
The reconstruction of Cherenkov photons and their association with a given track on a
track-by-track basis is described as a local approach to the reconstruction problem. The
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high number of charged tracks in a typical event, and the presence of backgrounds from
Cherenkov photons scattered in the aerogel and from dark counts in the HPDs, make a
practical implementation of this approach problematic.

Instead, an approach has been developed to determine the particle hypotheses for each
charged track in the event in a global way. Instead of assigning photons to tracks, the
problem is abstracted to the HPD detector plane. The charged tracks reconstructed by
the tracking system are used as seeds, and the photon yield at the HPD plane may be
extrapolated assuming different particle hypotheses. This is then compared to the observed
photon yield and a likelihood is calculated. The difference to the global likelihood when
individual track hypotheses are altered may be used as a powerful and flexible discriminant
for practical physics analysis.

We consider the global event hypothesis ~h = (h1, ..., hN). where hj is the mass-
hypothesis corresponding to track j. For a given event hypothesis ~h the expected signal
vi(~h) in each pixel i in the HPD plane as

vi(~h) =
N∑
j=1

aij(hj) (3.4)

where aij(hj) is the expected number of photoelectrons detected from source j under
hypothesis hj in pixel i. The likelihood for the full event is then

L(~h) =
M∏
i=1

Pvi(~h)(ni) (3.5)

where M is the total number of pixels in the HPD plane, and Pvi(~h)(ni) is the Poisson
probability to observe a signal ni when we expect vi(~h), and is expressed as

Pvi(~h)(ni) =
e−vi(

~h)vi(~h)ni

ni!
. (3.6)

More complete information on the likelihood and the prediction of pixel contents under
different hypotheses may be found in [125].

For each track the likelihood of each of the five common charged tracks (p, K, π, e,
µ) must be tested. For N tracks in an event this results in 5N permutations of track
identities. This exponential growth in possible combinations results in prohibitively long
reconstruction times - for 50 charged tracks in an event this results in 1035 possible
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combinations and likelihood calculations. The reconstruction instead exploits the high
abundance of pions in LHCb events relative to any other charged tracks. As such, the
starting point for the algorithm is to assume that all charged tracks are pions. Each
track in the event then has its mass hypothesis changed to each of the other four common
hypotheses, assuming all other tracks in the event are pions. The change in hypothesis
in all tracks which results in the biggest increase to the likelihood is made and retained.
For all other tracks the process is re-iterated until no increases in likelihood can be made.
Consequently, the number of combinations is reduced from 5N to 4(N − 1).

The high number of HPD pixels and the high multiplicity of LHCb events results in
this algorithm being highly CPU intensive, even with these improvements in speed. In
order to increase the speed of the algorithm such that it may be run online, some further
optimisations are made to reduce the number of possible combinations while yielding the
same final result. After the iteration over all tracks to find the largest increase in likelihood,
these are sorted by their largest change in likelihood from the previous iteration. If the
first sorted track has a likelihood increase under some rival hypothesis above a tuneable
threshold, its identity is changed and the algorithm proceeds to the next iteration. If a
track shows a strong preference for any particular likelihood, it is set to that hypothesis
and removed from future iterations. These optimisations improve the speed considerably,
which makes an implementation in the heavily time-constrained online reconstruction
possible.

3.3.2 Track PID estimators

Instead of simply assigning the maximum likelihood hypothesis identities to tracks in
an event, it is useful to examine the difference in likelihoods when different hypotheses
are imposed on the tracks. This allows examination of the relative strengths of rival
hypotheses for a given track, and for the application of selections with variable purity.
The discriminant between two rival hypotheses x and y is given as:

DLL(x− y) =
√

2∆ lnL (3.7)

where ∆ lnL is the difference in log-likelihood between the two hypotheses. This dis-
criminant may be used to preferentially select tracks on which the strongest identification
hypotheses can be placed, allowing for flexibility of selection purity depending on the
needs of any given analysis.
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In addition to these discriminants, the development of a neural net enables the DLL
information from the RICH detectors to be combined with other information in the detector
on the tracks specifically kinematic information from the track and the track quality. These
can offer greater discrimination than the DLL information alone. PID selections using
DLL information and neural net information have been implemented and published in a
wide variety of LHCb results.

3.4 Efficiency correction for PID selections

The aforementioned PID discriminants may be used to enhance the purity of selections.
It is usually vital in HEP analyses to understand the efficiency of a given selection on a
dataset. This is typically performed with the aid of simulation. The response of LHCb’s
PID estimators is well understood to be poorly modelled. The simulation assumes an
average refractive index based on idealised conditions. However, since the refractive indices
of the gas radiators depend on environmental conditions such as temperature and pressure,
the simulation can never fully account for the variations in reality. Additionally, the
simulated LHCb events are typically of lower multiplicity than in real data.

As such, a data-driven method to measure the efficiency of any PID selection is
commonly deployed on LHCb. This exploits the use of decays which can be reconstructed
with kinematic and displaced vertex information, and without the use of PID discriminants.
The method of extracting efficiencies from data is detailed in Section 3.4.1, while information
on the decay modes used to perform the efficiency re-weighting are provided in Section 3.4.2.

3.4.1 The PIDCalib technique

The variation of the PID response necessitates a data-driven approach to extract effi-
ciencies of PID selections. A centrally maintained software package, PIDCalib, is the
most commonly utilised tool on LHCb for performing such efficiency calculations. The
procedure recognises that the poorly modelled PID response of any given track may be
fully characterised by a suite of variables that are well modelled in the LHCb simulation.
A track’s trajectory through the detector determines which radiators the track traverses.
The pseudorapidity in particular is related to the RICH occupancy in that boosted tracks
fall in regions of the detector with higher multiplicity regions, where there is a greater
incidence of overlapping rings, which add ambiguity to the RICH reconstruction. The track
momentum determines in which radiators a given track will emit Cherenkov photons. The
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difference in expected Cherenkov angle of emitted photons for different mass hypotheses
is varied across the momentum range. Finally, the overall multiplicity of a given event
determines the occupancy of the HPDs - more isolated tracks generally lead to greater
differences in global likelihood when particle hypotheses are interchanged.

The PIDCalib technique utilises data samples of decays whereby the daughter particles
are reconstructed unambiguously without PID information, purely using kinematic and
vertex-based selection. Pure samples of each of the five common charged species are
attained - these are referred to as the calibration samples. A full suite of kinematic and
event variables on which the PID response depends is assembled - this is usually the track’s
momentum, one of either the track’s transverse momentum or its pseudorapidity, and a
variable indicative of the RICH occupancy such as the number of reconstructed tracks in
the event.

The calibration samples are then split into multidimensional bins in these variables, with
a binning schema chosen to be fine enough so that the PID response to any given selection
should be approximately uniform across each bin of the schema. We now compare an
ensemble of tracks from some signal mode in one bin to the tracks from the corresponding
calibration sample falling in the same bin. If the same PID selection is applied to a given
track type in the two datasets, the efficiency of the selection should be uniform between
the calibration and signal datasets in each particular bin, regardless of the ancestry of the
track. For decays involving multiple daughters on which PID selection is placed, we must
also take into account the kinematic correlations between the daughter particles.

To do so, we first determine a PID selection to be placed upon a signal mode of interest,
and prepare a sample of simulated signal data on which no PID selection has been placed.
For each species in the signal decay on which PID selection is placed, we must consult the
corresponding calibration datasets for the species. We then bin the calibration dataset in
those variables characterising the PID response, and apply the determined PID selection
to the calibration dataset to determine efficiencies for each bin. The efficiency in bin j is
then simply

εj =
kj
lj

(3.8)

where lj is the total number of calibration tracks in bin j, and kj is the number of
calibration tracks in bin j surviving the selection. For each signal event in the simulation,
we then take each daughter track and match its kinematics, along with the event occupancy,
to the corresponding calibration efficiency bin. Each daughter track t from candidate i is
assigned an efficiency εti. The signal efficiency for candidate i is then simply the product
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of all its daughter track efficiencies:

εi =
∏
t

εti . (3.9)

In such a fashion each signal candidate is assigned an efficiency weight. The signal per-
mode average efficiency to the PID selection is then simply the mean efficiency of the n
signal candidates:

εPID =

∑
εi
n

. (3.10)

Therefore the efficiency of a PID selection can be corrected in a data-driven way which
can intrinsically account for kinematic correlations between final state tracks.

3.4.2 Calibration datasets

The PIDCalib method requires the acquisition of data modes that can be reconstructed
unambiguously with the use of kinematic and vertex constraints alone, without utilising
PID information. This involves identifying a hadronic decay mode of a particle into charged
daughters with a distinct topology. Where ambiguity is introduced by the existence of
other topologically identical decays, selections can utilise vetoes on the invariant mass of
reconstructed candidates where different hypotheses are enforced on the daughters such
that contamination is eliminated. Any remaining combinatoric backgrounds arising due
to mis-reconstructions or combinations of unrelated tracks may be subtracted using the

sPlots method [126]. This is a technique which uses the results of a maximum Likelihood
fit to a discriminating variable to extract from a sample containing several species the
distributions of the individual species, and is widely used in HEP to efficiency correct
selections on an event-by-event basis.

Samples of kaons and pions are attained from decays of D∗+→ D0(K−π+)π+
s , where

the slow pion is not recorded as a calibration probe track but instead is used to tag the
flavour of the D0 meson at production. The D0 daughters are recorded as the calibration
probe tracks; the D0 daughter with the same charge as the slow pion is taken as the pion
probe and the daughter with the opposite charge as the slow pion is taken as the probe
kaon. To remove any D0 reflection backgrounds, candidates are vetoed if their mass is
within 25 MeV/c2 of the nominal D0 mass when reconstructed as a wrong sign K+π−,
or as π+π−, K+K−. This is of course necessary as any PID selection would bias the
calibration dataset in obvious ways.
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To improve the selection purity with respect to combinatoric backgrounds, further
selection is employed. The candidate D0 must have a transverse momentum greater than
1.5 GeV/c, and a reconstructed mass within 75 MeV/c of the nominal. It must also have a
vertex χ2 < 13 and a flight distance χ2 > 49. The IPχ2 w.r.t. the PV, or the improvement
to the PV’s vertex χ2 when the candidate D0 is excluded, must be less than 30. The cosine
of the angle between the D0 momentum and the displacement vector from the PV to the
D0 must exceed 0.9999. The slow pion must have a momentum less than 150 MeV/c and
a track χ2 lower than 5. The D∗+ candidate must have a vertex χ2 < 13.

The signal extraction is performed as a simultaneous 2D fit to the reconstructed D0

mass and the mass difference between the D0 and the D∗+, called the δm. The δm must
be within the range 130 – 155 MeV/c2. Both the D0 mass and δm signal shapes are
parameterised by a double Gaussian function constrained such that both means are equal.
For the D0 mass, the combinatoric background component is characterised by a first order
polynomial. As can be seen from the mass fit in Figure B.7b, a very high signal purity
can be achieved in this decay.

Samples of protons are acquired in the decay Λ→ pπ−. The long Λ lifetime results in
a high separation from the primary vertex with a two-body hadronic decay which is easy
to reconstruct with high purity. To eliminate contamination from the decay K0

S→ π+π−,
which has a similar lifetime and separation from the primary vertex, candidates which
reconstruct within 20 MeV/c2 of the K0

S nominal mass under the π−π+ hypothesis are
vetoed.

To further suppress the combinatoric background the Λ0 candidate has several further
requirements enforced. The relatively high Λ0 lifetime compared to heavy flavour decays
is exploited by requiring the product cτ is greater than 5 mm. Its vertex χ2 must also be
less than 16.

The signal is extracted from a fit to the reconstructed Λ mass. The fit model utilised is
a double Gaussian function with a shared mean for the signal with a first order polynomial
combinatoric background. An example mass fit from the 2011 data is shown in Figure 3.6b,
again demonstrating the high purity of the final selection.

3.4.3 RICH performance with calibration datasets

With the calibration datasets, the measurement of the RICH performance in a data-driven
way is now possible. The DLL responses of protons, kaons and pions are shown in Figure 3.7
for the 2011 calibration datasets. Strong discrimination between the species of charged
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Figure 3.6: D0 (a) and Λ0 (b) mass fits from 2011 calibration data. Solid blue lines indicate the
combined fit from the signal and combinatoric components.

hadrons can be achieved using the PID estimators.
By examining the PID responses of the various purely reconstructed track types we

can derive the receiver operating characteristics of the DLL estimators. The kinematics
of the calibration samples are of course unique - other signal decays will produce tracks
with different kinematics. As such it is more useful and more illustrative of the general
LHCb performance to measure the characteristics as a function of momentum. To do so
we subdivide samples of two different track types into momentum bins and scan across
the appropriate PID estimator which provides discrimination between the two track types.
This is demonstrated in Figure 3.8 for the 2012 calibration data, illustrating the achievable
separation for pion and kaon tracks as a function of momentum.
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Figure 3.7: DLL responses for pions (a), kaons (b) and protons (c), from the 2011 calibration
datasets, demonstrating the strong discriminatory power that the RICH provides.
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3.5 Development of heavy flavour proton calibration

samples

As outlined in the previous section, pure samples of protons are acquired from the Λ0→ pπ−

calibration mode to allow for a data-driven efficiency correction for PID selections. The long
Λ0 lifetime makes the decay mode a good candidate for selection, as the large separation
of the Λ0 decay vertex from the primary interaction allows for a high purity selection, even
without the use of PID discrimination. For the PIDCalib technique to be utilised, the
samples are binned in a suite of variables characterising the PID response to derive local
efficiencies in the variable space. This necessitates the calibration sample to have good
coverage in these variables with respect to the protons produced in heavy flavour decays.
The relatively low mass of the Λ0 compared to the heavy flavour particles of interest to
LHCb leads to only partial coverage in these variables of the calibration sample. As such,
for a considerable region of the variable space it is impossible to calculate efficiencies
for PID selection on protons. In collaboration with others in the LHCb collaboration’s
PID working group, the candidate developed a new proton calibration sample based on
hadronic decays of Λc particles. In this section the work performed in developing selections
for the datasets is outlined. Work on the signal extraction is given, followed by a series of
stability tests performed by the candidate to ratify the new samples.

3.5.1 Kinematic coverage of Λ0→ pπ− calibration samples

The samples of protons acquired from Λ0→ pπ− decays have a typically lower momentum
and a lower transverse momentum than those originating from decays of heavy-flavour
particles. High momentum protons produced from these decays also tend to be produced
in the higher pseudorapidity range. This leads to the high momentum, low eta region -
corresponding to high pT- being largely unpopulated in Λ0→ pπ− decays - although this
region is often highly populated by protons originating in heavy-flavour decays of interest
to LHCb. This makes the efficiency correction for proton tracks falling in this high pT

region of the variable space impossible utilising just the Λ0→ pπ− sample. The proton
track kinematics are given in Figure 3.9.

Several workarounds have been implemented when calculating efficiency corrections
for proton tracks. The central processing and selection of data at LHCb is referred to as
“stripping”. In this procedure, PID selections are very commonly deployed, and the events
failing the selection are discarded. In doing so, access to the unbiased PID distributions is
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Figure 3.9: The p – η spectrum for proton tracks in the Λ0→ pπ− calibration sample. The
dataset corresponds to a small fraction of the data gathered in 2012 with the magnet polarity
down. The high pT region at the bottom right of the plot is not populated by protons from these
decays. The signal kinematics have been extracted through use of the sPlots technique.

lost. This is often necessary to reduce the retention of the selection due to limited storage
capacity and bandwidth. If no PID cuts are employed in the stripping selection of a decay
mode, PID cuts can then be placed only in regions of the PIDCalib kinematic space in
which proton calibration tracks have been acquired. This ensures no signal is lost, but the
overall power of the selection to reduce backgrounds is reduced.

If PID cuts are included in the stripping selection for a given decay mode, this is not
feasible as the selection has already been uniformly applied to all tracks in the variable
space. In such a case, one possible workaround is to veto signal candidates whose protons
fall in the region of the variable space not populated by calibration data. The efficiency
of the veto, provided the variables in the variable space are well modelled, may be safely
evaluated with the use of simulation. This has the very unfortunate effect of reducing the
signal statistics.

In analysis of rare or hitherto unobserved decays, it is also possible to impose very large
kinematic bins at the boundary of the variable space which is populated by calibration
data. This results in an efficiency being attainable due to the presence of calibration data
in all bins in the schema, but leads to the potential for biases in the efficiency correction, as
the efficiencies in the large bins at the kinematic fringes of the calibration dataset are likely
to have large variations in PID response over the bin - in samples with different proton
kinematics from the calibration sample the average PID efficiency can be significantly
different in such large bins. As such, the systematic uncertainty of the efficiency correction
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increases accordingly.

3.5.2 A heavy flavour proton calibration sample

The described workarounds to the poor kinematic coverage of the calibration sample either
result in higher backgrounds, lower signal statistics or higher systematic uncertainties on
the efficiency correction. As such, it was highly desirable to find a new decay mode with a
proton in the final state which could be cleanly reconstructed without the use of PID, but
could also populate the higher momentum regions the existing Λ0→ pπ− sample could
not.

This raises the question of which heavy flavour decays can be exploited in this fashion.
The desirable traits of such a mode are:

• That it be possible to select the mode in abundance. The efficiency calculation
involves binning the sample in up to three dimensions, with a sufficient granularity
to account for the variation in efficiency in the variable space. Consequently, high
statistics of calibration tracks are desirable.

• That it be possible to select the mode with a high purity. The extraction of the
signal should be pure, as any contamination from other species of charged tracks
in the final sample will bias the PID response distributions. This is especially of
concern given the inability to utilise the information from the RICH detector on the
proton probe track.

• That the kinematics of the decay are such that the proton is produced over a
wide range of the variable spaces used in PIDCalib. Given the limitations of the
Λ0→ pπ− sample, it is desirable that the proton kinematics should populate the
high momentum, low pseudorapidity region which is unpopulated by the existing
calibration protons.

No decays of the Λ0
b with a direct proton daughter have been measured to have branching

fractions higher than 10−3 [10]. The most common direct Λ0
b decays to protons are

via the decays Λ0
b→ pK− and Λ0

b→ pπ−. These have been measured at CDF [127] and
LHCb [128] to have branching fractions of the order 10−6. The high abundance of a
large range of other B→ h+h′− decays which are kinematically indistinguishable presents
difficulties in preventing contamination from other charged species. Without the use of PID
discriminants, the only way to ensure that peaking backgrounds from other B→ h+h′−
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decays are eliminated is to place vetoes on the B candidate mass when reconstructed
under rival particle hypotheses - a measure which lowers the signal efficiency considerably.

Unlike the Λ0
b , the Λc decays to final states with protons in channels which have high

measured branching fractions. The Cabibbo-favoured decay Λ+
c → pK−π+ has a measured

branching fraction of approximately 5 % [129]. Additionally, the Λc is produced copiously
in LHCb interactions, with a measured cross section at

√
s = 7 TeV of approximately

233 µb [130]. While the mode is abundant, the short Λc lifetime (with a PDG average
of 200 ps [10]) relative to that of the Λ0 and D0 presents some difficulty in developing
a pure selection. A further concern is that the decay is topologically identical to decays
of the form D→ hhh, which necessitates the use of vetoes on the candidate mass when
reconstructed under rival daughter mass hypotheses to ensure an uncontaminated selection.

The low separation of promptly-produced Λc decay vertices from the primary interac-
tion results in a very high combinatoric background from pairings of unrelated tracks. This
background is considerably reduced when instead of reconstructing promptly-produced
Λc, the decay Λ0

b→ Λ+
c (pK−π+)µ−νµ is reconstructed. Unlike direct Λ0

b decays to protons,
this decay has a high branching fraction of approximately 10 % [10]. The Λ0

b lifetime is
considerably higher than that of the Λc, with a PDG averaged lifetime of approximately
1.45 ps [10] (of which the most accurate contribution to said average is an LHCb mea-
surement [131]). As such, the Λc decay vertex is at a considerably larger distance on
average from the primary interaction than in those Λc that are produced promptly, and the
combinatorics are lower. While the neutrino is not reconstructed, leading to a non-peaking
Λ0
b mass, the bachelor muon in the Λ0

b decay can fire the muon-based triggers, which
operate with a high efficiency relative to the triggering of purely hadronic modes.

As such, it was decided to reconstruct both prompt Λ+
c → pK−π+ decays and

Λ0
b→ Λ+

c (pK−π+)µ−νµ decays, with selections that utilise no PID information on the
protons in the decays, to produce new PID calibration samples.

3.5.3 Triggering and stripping of Λc decays

In this selection the stripping selections developed by collaborators are given. The trigger
requirements that must be placed on the datasets to ensure an unbiased selection with
respect to the proton PID are also detailed.
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Inclusive Λ+
c → pK−π+

The prompt selection reconstructs the pattern Λ+
c → pK−π+, which will reconstruct Λc

decays from prompt and secondary decays. The stripping selection requires the momentum
of all Λc daughters to exceed 2 GeV/c, with a transverse momentum of greater than
250 MeV/c. All daughters must also have an IPχ2 with respect to the primary vertex of
greater than 8. The reconstructed Λc must have a transverse momentum greater than
1 GeV/c and satisfy certain vertex quality cuts based on the greatest distance of closest
approach between the Λc daughter tracks and the vertex χ2. If the proton mass hypothesis
in the decay is changed to a pion, the reconstructed mass must fall outside of the range
1800 – 1890 MeV/c2 to suppress D+ and D0 contamination.

To ensure an unbiased selection of protons, certain triggering requirements are enforced
on the decays. The Λc decay itself must have fired triggers that cannot have placed PID
requirements on the proton. At HLT2 the Λc candidate must have fired a trigger line
dedicated to reconstructing three-body hadronic decays of charm.

Λ0
b→ Λ+

c (pK−π+)µ−νµ

The stripping line to select this mode accepts only those events with fewer than 250
reconstructed long tracks in the event. All Λc daughters must have a transverse momentum
exceeding 300 MeV/c.The daughter kaon must have a log (LK/Lπ) greater than 8 while the
daughter pion must have a log (LK/Lπ) less than -2. The reconstructed Λc candidate must
have a transverse momentum exceeding 2 GeV/c and have a reconstructed mass within
80 MeV/c2 of the nominal. The Λc vertex must have a reduced vertex χ2 of less than 3.
The Λc’s flight distance χ2 must exceed 20. The angle between the momentum vector of
the reconstructed Λc and the displacement vector of the Λc to the primary vertex should
have a cosine greater than 0.99. The bachelor muon must have a transverse momentum
greater than 1 GeV/c and a log (Lµ/Lπ) greater than 0. The reconstructed Λ0

b must fall in
a wide mass window of 3 – 5 GeV/c to account for the unreconstructed neutrino. The Λ0

b

vertex must have a reduced vertex χ2 lower than 3. The angle between the Λ0
b momentum

vector and the displacement vector between the Λ0
b and the primary vertex must have a

cosine greater than 0.999. The distance along the beamline between the Λ0
b and Λc decay

vertices must exceed 0.5 mm.
The Λ0

b decay must either be selected by a trigger selection that is known to place no
PID on the proton. To this end the Λ0

b candidate must be selected by an algorithm in the
high level trigger exploiting the topology of the decays and the presence of a muon in the
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decay.

3.5.4 Considerations in developing Λc selections

The reconstructed Λc mass spectra for the PID stripping output for the magnet-down
data gathered in 2012 after the trigger selections are given in Figure 3.10. While Λc peaks
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Figure 3.10: The mass spectra for the Λ+
c calibration modes after the stripping selection. The

data presented here corresponds to the full dataset gathered in 2012 with the magnet-down
polarity.

are clearly visible, the presence of a high combinatoric and the indistinguishability of
Λ+
c → pK−π+ decays from D→ hhh decays present challenges in deriving a pure selection.

The aim of the candidate’s work was to further develop the existing selections put in place
by others to create samples that could be reliably be used by physics analyses as part
of the PIDCalib package to calculate PID selection efficiencies on protons. Several key
considerations were taken into account when developing selections:

1. The PIDCalib technique entails fitting the candidate mass distribution to extract
signal weights with the sPlot method once, before PID cuts. The PID cuts are then
enforced and the sum of weights before and after cuts are used to derive selection
efficiencies. The validity of signal weights derived with sPlot is only retained after
some selection if the selection applies to each species uniformly in the discriminating
variable. In this case, the validity of the weights is only retained after the PID
selection if said selection applies uniformly in the Λc mass to each individual species.
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For simplicity, the fit model for the Λc mass should have only components for
the signal and a component for the combinatoric. The presence of any “reflection”
backgrounds from misidentified protons will result in preferential sculpting of the Λc
mass in regions where the reflections manifest, invalidating the signal weights. As
such the elimination of any backgrounds originating from proton misidentifications
is vital.

2. The overall motivation behind creating heavy flavour samples of proton calibration
data was to enable the derivation of PID efficiencies in the kinematic space not
covered by the extant Λ0→ pπ− sample. As such, any selection should endeavour to
preserve the high momentum protons preferentially.

3. The combinatoric backgrounds in Λc decays are much higher than those in
D∗+→ D0(K−π+)π+

s or Λ0→ pπ− decays. To control the statistical uncertainties
arising from the Λc mass fit attempts should be made to improve the signal purity
over the stripping output.

3.5.5 Eliminating D→ hhh misreconstructions

The proton mass hypothesis is varied to probe for reflections from the topologically indistin-
guishable D→ hhh decays. The most obvious to eliminate are the decays D+→ K+K−π+

and D+→ π+K−π+ (and the D+
s equivalent decays), whereby only a mis-identification

of the proton is necessary to be reconstructed in the Λ+
c → pK−π+ spectrum. The cross

sections of the D+ and D+
s at LHCb have been measured to be (676 ± 137) µb and

(194 ± 38) µb respectively [130], compared to 233 µb for the Λc. The branching fractions
for the D→ hhh decays are provided in Table 3.1. From the high branching fractions and
high production cross sections we expect all listed decays to be copiously produced at
LHCb.

Mode B [%]
D+→ K+K−π+ 9.13 ± 0.19
D+→ π+K−π+ 9.54 ± 0.26
D∗+→ D0π+ 67.7 ± 0.5
D0→ K−π+ 3.88 ± 0.05

Table 3.1: The branching fractions for the D decays relevant to the suppression of reflection
backgrounds.
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To investigate the presence of D reflections we calculate the candidate mass when the
mass hypothesis of the proton is changed to either a kaon or pion. The mass distributions of
the candidate mass in these cases for the raw stripping output of Λ0

b→ Λ+
c (pK−π+)µ−νµ are

given in Figure 3.11. Large peaks from the decaysD+→ K+K−π+ andD+→ π+K−π+ are
observed. Centred at 2010 MeV/c2 in the M(ππK) spectrum a smaller peak corresponding
to D∗+→ D0(π+K−)π+, where the intermediate D0 decays with a short lifetime such that
the K− and π+ from the D0 decay form a common vertex with the bachelor π+, can be
observed. While not sharply peaking in the Λ+

c → pK−π+ candidate mass, they are a
large component of the combinatoric background. If the response of the combinatoric
background to PID cuts difers from that of the reflection background, their inclusion in
any fit will result in the loss of weight normalisation when PID cuts are applied to the
sample.

To prevent this contamination vetoes are placed on candidates when reconstructed
under rival mass hypotheses. The M(KKπ) must not be between 1860 MeV/c2 and
1890 MeV/c2 to exclude D+→ K+K−π+ decays. The M(πKπ) must not be between
1800 MeV/c2 and 1900 MeV/c2 to exclude D+→ π+K−π+ decays. We also impose that
the M(πKπ) must be greater than 2025 MeV/c2 or lower than 1990 MeV/c2 to exclude
reconstructions of D∗+→ D0(π+K−)π+. The vetoed regions are shown in Figure 3.11. It
should be noted that the broad structures in the M(KKπ) spectrum in the high mass
region are dominated by the reflections of D+→ π+K−π+ and D∗+→ D0(π+K−)π+, and
once the M(πKπ) vetoes are applied they are no longer present.

3.5.6 Resonant characteristics of Λ+
c → phh′ decays

In accordance with the helicity formalism described in [86] the resonant structure of
Λ+
c → phh′ decays can be parameterised by 5 variables, shown in Figure 3.121. These

variables are:

M(ph1)(h1h2) - The invariant mass of the proton and opposite sign meson, and the
invariant mass of the meson pair. Decays through intermediate resonances (such as
K∗,Λ(1520), φ, f 0(980) etc.) will result in local enhancements in these quantities
not present in a phase-space generated distribution.

1We note the caption from the original paper contains an error in the definition of φh1h2 . This is
defined by the angle between the plane containing the meson daughter momenta, and the plane containing
the p momentum and the Λ+

c polarisation vector, not the plane containing the p momentum and the
x-axis.
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Figure 3.11: The mass spectra for the Λ+
c candidates in the Λ0

b→ Λ+
c (pK−π+)µ−νµ stripping

output when the proton is reconstructed as a kaon or pion. The data presented here corresponds
to the full dataset gathered in 2012 with the magnet-down polarity. The shaded areas illustrate
the vetoed regions where the KKπ background (left) and the ππK backgrounds (right) may be
found.

cos θp - In the Λc rest frame, the angle between the proton momentum vector and the
polarisation axis of the Λc.

cosφp - In the Λc rest frame, the angle between the component of proton momentum
perpendicular to the Λc polarisation and the direction of the lab frame Λc momentum
vector.

φh1h2 - In the Λc rest frame, the angle between the plane containing the proton momentum
vector and the Λc polarisation vector, and the plane containing the two meson
momentum vectors.

The Λc in p – p collisions [132] is predicted to be polarised. Λc produced in target
experiments with a π beam have demonstrated increasingly negative polarisation of the
Λc with increasing transverse momentum [83]. If the production at LHCb is indeed highly
polarized, sping of the Λc and the p in the decay should mean that these variables can be
of use in isolating signal from the unpolarised combinatoric background.

71



Figure 3.12: The angular variables characterising the Λc resonance structure. From [86].
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3.5.7 Selection Optimisation

A study was performed to further optimise the selection of Λc candidates with respect to
combinatoric background. Some moderate PID cuts are first placed on the kaon and pion
in the Λc decay to ensure that contributions from other misidentifications are suppressed,
such that the only species in the Λc mass spectrum are the combinatoric background and
the Λc signal. These PID cuts are log (LK/Lπ) > 5 for the kaon and log (LK/Lπ) < −5

for the pion.
The Λc mass distributions for varying stages of the selection are shown in Figure 3.13.

These include the raw mass distributions from the stripping output, the mass distributions
after application of the trigger selection and D reflection vetoes, and the full training suite
of cuts.
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Figure 3.13: The mass spectra for the Λc candidates in each of the calibration modes for each
stage of selection.

Optimisation procedure

The goals of the procedure were to improve the purity of the selection by removing
combinatoric backgrounds, while minimising the uncertainty on the signal yield. Any
selection developed must endeavour to preserve as many of the high-momentum protons
in the sample as possible.

Fits were generated to the Λc mass spectra of the four calibration modes. The datasets
used corresponded to 20 % of the magnet down data. In all cases the signal is parameterised
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by two Gaussian functions with their means constrained to be equal and both widths
allowed to vary. The combinatoric background in all cases is paramaterised by a natural
exponential function with the exponent allowed to vary. An unbinned extended maximum
Likelihood fit was performed to the spectrum to extract a set of signal weights using the

sPlots technique. The fit models are shown in Figure 3.14.
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Figure 3.14: The mass fits for the Λc calibration data used in the selection optimisation. The
data presented here corresponds to one fifth of the dataset gathered in 2012 with the magnet-
down polarity. Solid blue is the total Probability Density Function (PDF), dotted cyan are
the individual signal Gaussians, dashed green is the combined signal PDF, dashed red is the
combinatoric background.

The signal weights were used to disentangle the kinematic and event distributions
for the signal and combinatoric components for a variety of variables. Examination of
these distributions enables the identification of variables that may be used to discriminate
between signal and combinatoric background.

Variables for which the distributions difer were included in a recursive selection
optimisation algorithm developed by Conor Fitzpatrick. The algorithm uses the figure of
merit for the significance σ

σ =
S√
S +B

(3.11)

where S is the sum of the signal weights and B is the sum of the background weights. For
each specified variable a valid range and a step size is set. The algorithm then performs
an optimisation for each variable individually, finding the optimum cut and using this
as a seed value for the recursive optimisation. The cuts are ordered by the sum of the
fractional signal efficiency and fractional background rejection to identify the most powerful
discriminants. The cuts are then re-optimised together, using the seed values found in the
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previous step. The cuts are then individually scanned over in the designated order, with
the cut order and the signal significance recorded. This reoptimisation is then repeated an
arbitrary number of times until the cut order and signal significance converge. At this
point a local maximum in signal significance has been achieved. A cross check is employed
to check for other maxima in the cutspace by altering the order in which the cuts are
employed, but in all cases the local maxima found proved to be the global maxima.

Optimisation results

The investigations of the signal and background distributions of the kinematics and event
variables were used to inform which should be used in the recursive optimisation procedure.
The resonant variable cosφp was found to display excellent separation power between
signal and background. In the signal, the proton is produced with a momentum in the Λc
rest frame which is preferentially parallel or anti-parallel with the direction of Λc travel in
the lab frame. For the combinatoric background, the particle reconstructed as the proton
has a very strong preference for a momentum in the Λc rest frame which is antiparrallel
with the Λc direction of travel in the lab frame. The signal and background distributions
for cosφp in the Λ0

b→ Λ+
c (pK−π+)µ−νµ training sample are provided in Figure 3.15.

By placing a minimum cut on this variable the purity of the sample may be enhanced
significantly.

The final training results for those variables found to have strong discriminatory power
are provided in Table 3.2. We note that some variables which have discriminatory power in
one mode did not display such discrimination between the signal and background species
in other decay modes. This is attributable to the markedly different selections placed on
the samples at the stripping and HLT2 level.

Cut Incl. Λ+
c → pK−π+ Λ0

b→ Λ+
c (pK−π+)µ−νµ

min cosφp -0.3 -0.45
min | cos θp| - 0.1
min m(pK) 1.7 GeV/c2 -
min M(Kπ) - 0.8 GeV/c2

max log(ΛcIPχ
2) 8 -

Table 3.2: The optimum cuts placed on the samples as found in the selection optimisation
procedure to optimise the signal significance.
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3.5.8 Final data sample

Final Λc mass fits

The fit model used is the same as for the training samples. All parameters in the fit are
permitted to vary. The fits to the Λc mass spectrum after the final selections are given in
Figure 3.16. The signal yields, selection purities and the candidate efficiency with respect
to the training samples are given in Table 3.3.

Mode Polarity Polarity Nsig Total Nsig Purity εfinal|training

Inclusive Λ+
c → pK−π+ MagDown 100521 ± 433 196400 ± 600 80 % 34 %MagUp 95879 ± 415

Λ0
b→ Λ+

c (pK−π+)µ−νµ
MagDown 177576 ± 517 338002 ± 716 88 % 54 %MagUp 160426 ± 495

Table 3.3: The final signal yields (Nsig) for each mode by polarity, with the combined signal
yield for each mode. The signal efficiency, εfinal|training, of the selection with respect to the
training sample is also provided. The purity is defined as S

S+B , where S and B are the signal and
background yields respectively within a 30 MeV/c2 window centred on the nominal Λc mass.
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Figure 3.16: The mass fits for the Λc calibration data after the final selection. The datasets
correspond to the full dataset in 2012 gathered with the magnet polarity down. Solid blue is the
total PDF, dotted cyan are the individual signal Gaussians, dashed green is the combined signal
PDF, dashed red is the combinatoric background.

Proton kinematics

The final distributions for the proton kinematics are provided herein. Again we use the full
dataset taken in 2012 with the magnet polarity down. The momentum distributions are
given in Figure 3.17, the transverse momentum distributions provided in Figure 3.18 and
the 2D distributions of momentum and pseudo-rapidity given in Figure 3.19. In all cases,
the coverage in the high pT region is vastly improved compared to the Λ0→ pπ− calibration
samples. This enables for the first time a data-driven PID correction for protons in the
high pT region.

77



p [MeV/c]

0 20 40 60 80 100

3
10×

E
n

tr
ie

s
 /
 (

 1
0
0
0
0
.0

0
 M

e
V

/c
 )

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

(a) Inclusive Λ+
c → pK−π+ p

p [MeV/c]

0 20 40 60 80 100

3
10×

E
n

tr
ie

s
 /
 (

 1
0
0
0
0
.0

0
 M

e
V

/c
 )

0

10000

20000

30000

40000

50000

(b) Λ0
b→ Λ+

c (pK−π+)µ−νµ p

Figure 3.17: The proton momentum distributions in the final calibration samples. The dataset
corresponds to the full data taken in 2012 with the magnet polarity down.
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Figure 3.18: The proton transverse momentum distributions in the final calibration samples. The
dataset corresponds to the full data taken in 2012 with the magnet polarity down.
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Figure 3.19: The proton p – η distributions in the final calibration samples. The dataset
corresponds to the full data taken in 2012 with the magnet polarity down.
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PID discriminant distributions

The sideband-subtracted log (Lp/Lπ) and log (Lp/LK) distributions are provided in
Figure 3.20 for the inclusive Λ+

c → pK−π+ sample and in Figure 3.21 for the
Λ0
b→ Λ+

c (pK−π+)µ−νµ sample (in both cases the distributions shown are from the data
gathered with the magnet polarity down). We note that due to kinematic differences in
the proton tracks the distributions are not expected to be compatible between the samples.
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Figure 3.20: The inclusive Λ+
c → pK−π+ proton DLL distributions. The dataset corresponds to

the full data taken in 2012 with the magnet polarity down.
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Figure 3.21: The Λ0
b→ Λ+

c (pK−π+)µ−νµ proton DLL distributions. The dataset corresponds to
the full data taken in 2012 with the magnet polarity down.
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3.5.9 Cross checks and associated systematics

The PID selection efficiencies calculated using these samples must undergo certain quality
checks before they may be utilised to evaluate PID efficiencies of other decay modes in the
PIDCalib package. The first of these is the evaluation of a systematic uncertainty to be
associated with the yield given by the sum of weights after the PID selection, and is a
check of the sPlot weight normalisation. The second is that the local efficiencies in the
variable space on which the PID performance of tracks depends between the samples is
compatible.

Fit-and-count systematic

In the PID correction using the PIDCalib package, the calibration sample has a signal
extraction peformed on the entire sample of data. Signal weights are assigned to each
candidate in the distribution from this signal extraction using the sPlots technique, such
that the sum of the weights is equal to the extracted yield. The sample then has the PID
selection applied to it, and the sums of signal weights before and after the selection are
used to extract the efficiency of the selection.

In the case of the Λc based samples, we find that a significantly higher combinatoric
background is present in the sample than is found in the existing calibration samples (see
Figure 3.6). This background is assumed to be composed only of combinations of unrelated
tracks, which should have a uniform response to any PID selection with respect to the Λc
mass. This uniformity is required such that the normalisation of the weights extracted
using the sPlots method is preserved. If there is any particular physics background which
is preferentially sculpted by the PID selection then the signal weights will no longer be
properly normalised once PID selection is applied.

This is explicitly tested using a “fit-and-count” method. A particular PID variable is
cut at various values, at each point finding the following:

• The signal yield surviving the selection as given by the sum of signal weights for
those candidates surviving selection.

• The signal yield surviving the selection as calculated from a new fit to the surviving
data.

Any non-combinatoric backgrounds in the sample will result in observable differences
between the two samples. The signal shape in the fits is constrained to be the same as the
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signal shape found from the fits to the full dataset. The specific parameters that are fixed
are the widths and relative fractions of the two Gaussians used in the signal.

Example plots of the residual, defined as the difference between the extracted signal
yield from the fit and the yield from the sum of signal weights surviving selection, are
provided in Figure 3.22, where we demonstrate a broad scan over a wide range of minimum
values of log (Lp/Lπ) (-100, – 40) and a fine scan over those log (Lp/Lπ) values typically
used in selections in heavy flavour physics analyses (-10, – 20).

A structure is observed whereby the resisual grandually increases as the PID selection
is tightened until log (Lp/Lπ) = 2 and then rapidly falls off, becoming negative. This
structure in the residuals is observed in all the decay modes. This seems indicative
that there is some physics background under the combinatoric background, which leads
to a bias in the extracted signal yield as attained through counting the signal weights
suriving PID selection. It is not possible to identify any physics backgrounds through
investigation of the Λc mass spectrum with the available statistics. We note that the
effect is minor - with a maximum systematic uncertainty in the extracted yield of 0.34 %
in the inclusive Λ+

c → pK−π+ and 0.2 % in the Λ0
b→ Λ+

c (pK−π+)µ−νµ. The size of the
systematic error, however, is smaller in size than other systematic uncertainties associated
with the PIDCalib technique in the case of protons; systematic uncertainties arising from
variations in efficiency over individual calibration bins are commonly of the order of 1 %.
The maximum residuals on the extracted signal yields by polarity are given in Table 3.4,
where we also provide the corresponding fractional systematic error arising from the
weighting procedure by polarity.

Mode Polarity Polarity Nsig |Max residual| Max syst [%]

Inclusive Λ+
c → pK−π+ MagDown 100521 ± 433 295 0.2

MagUp 95879 ± 415 321 0.3

Λ0
b→ Λ+

c (pK−π+)µ−νµ
MagDown 177576 ± 517 139 0.1
MagUp 160426 ± 495 235 0.2

Table 3.4: The maximum residuals and associated systematic errors from the fit-and-count study.
The maximum absolute value of the residual is given. The associated systematic is the maximum
residual over the extracted signal yield after PID selection corresponding to the maximum residual.
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Figure 3.22: The signal yield residuals from the fit-and-count systematic check. The datasets
correspond to the magent down data taken in 2012. The residual is defined as the difference in
extracted signal yield from the fits to the Λc mass spectra after PID selection and from counting
the signal weights surviving PID selection from the fit to the full dataset. Top are coarse scans
over log (Lp/Lπ) over a wide range of cut values, bottom are fine scans over the range of typically
utilised log (Lp/Lπ) cuts.

Efficiency comparisons

As a cross check we compare the recorded efficiencies across the variable space as calculated
with each individual sample. By binning finely in the variable space, the differences in the
kinematics between the samples, and the difference in the global number of reconstructed
tracks, may be mitigated. Generally, good agreement is observed across the phase space.
Such a comparison is shown in Figure 3.23, corresponding to a fairly common PID selection
of log (Lp/Lπ) > 10. In this plot we show the PID efficiency for the samples as a function of
the proton momentum for events which have an event number of tracks between 200 – 400,
and a proton pseudorapidity between 3 – 3.5.
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Figure 3.23: The proton PID efficiency in the inclusive Λ+
c → pK−π+ and the

Λ0
b→ Λ+

c (pK−π+)µ−νµ as a function of momentum, for candidates which have an event number
of tracks between 200 – 400, and a proton pseudorapidity between 3 – 3.5. Generally a good
agreement between the sample efficiencies can be observed. The bins with poor agreement at
high momentum correspond to regions where the sample kinematics are very different from one
another.

3.5.10 Summary

To summarise, new data samples of proton tracks were prepared from Λ+
c → pK−π+

decays to be used in a data-driven efficiency correction for PID selections on protons.
These proton tracks have typically higher transverse momenta than those from previously
available proton calibration samples based on Λ0→ pπ− decays, enabling for the first time
a data-driven calibration for high pT protons at LHCb.
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3.6 Data-driven metrics of aerogel performance

As described in Section 3.2.3, the aerogel Cherenkov radiator housed in RICH1 is responsible
for the particle identification of charged hadrons at low momentum. It is designed to provide
discrimination between charged hadrons in the momentum range 1 – 15 GeV/c. Prompted
by discussion within the LHCb collaboration of the value of the aerogel’s contribution to
particle identification at the experiment, the candidate utilised the calibration datasets
outlined in Section 3.4.2 to evaluate the performance of the aerogel in a data-driven
fashion.

3.6.1 The RICH aerogel

The aerogel is responsible for very-low momentum PID discrimination at LHCb. Particles
in heavy-flavour decays at LHCb have momentum distributions which tend to be higher
than the momentum range in which the aerogel can provide discrimination. The particles
for which discrimination at this momentum range becomes important are those used
in tagging procedures. For example, in decays of D∗+→ D0(π+K−)π+ the slow pion
produced in the decay of the D∗+ has a momentum range in which the aerogel may provide
significant discrimination. Particles produced in association with heavy-flavour particles
also have lower momenta than those in heavy-flavour decays, and can provide significant
tagging power of the heavy-flavour particle’s flavour at production - which is especially
important in the analysis of neutral mesons that can change flavour in flight through
mixing.

In 2011 the aerogel enclosure was not gas-tight, and as such the aerogel was operated
in contact with the C4F10 gas. At the end of the year studies revealed that the aerogel
photon yield had fallen throughout the year as a consequence of C4F10 gas leeching. This
also altered the refractive index of the material, leading to an increase in the θC by
approximately 11 %. To prevent such a degradation in performance in 2012, the aerogel
was placed in a gas-tight carbon fiber enclosure filled with CO2.

To better evaluate the aerogel performance, such that we might better understand
what discrimination is afforded by the RICH system to low momentum particles, the
candidate attempted to measure the PID discrimination produced by the aerogel radiator
in a data-driven fashion. This would also provide more information on the efficacy of the
RICH aerogel box in preventing the degredation of the aerogel performance.
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3.6.2 Targetting the aerogel performance

The evaluation of the aerogel performance using real data presents problems, as no data
was collected using just the aerogel and without the gas radiators which also provide PID
discrimination. As such, we must exploit a region of the momentum space whereby the
gas radiators cannot provide discrimination, but the aerogel can. The radiator momentum
thresholds for pions, kaons and protons in the aerogel, CF4 and C4F10 are provided in
Table 3.5. The low pion threshold in the C4F10 results in a very low momentum range for
pions for which the particle identification only uses information from the aerogel. For kaons
below 9.3 GeV/c and protons below 17.7 GeV/c the only Cherenkov radiation emitted by
the particle will be in the aerogel. Comparisons to the pion hypothesis in this momentum
range cannot be made as pions would radiate in the gases, and the presence or absence of
radiation associated with the tracks results in a non-zero contribution to log (Lp/Lπ) and
log (LK/Lπ) using information from the gas radiators.

Instead, we examine the distributions of log (Lp/LK) for kaons and protons below
9.3 GeV/c. In this range, any discrimination from the RICH between the kaon and proton
mass hypotheses must necessarily come from photons radiated in the aerogel. By examining
the distributions of log (Lp/LK) for genuine kaon and proton tracks we can quantitively
ascertain the aerogel performance.

Pure samples of proton and kaon tracks with momenta below 9.3 GeV/c were taken
from the calibration datasets outlined in Section 3.4.2 for these studies. Some preselection
is applied to tracks in this momentum range to ensure each track used in the study should
have been able to radiate in the radiator under the kaon mass hypothesis. We require that
the reconstructed particle passed through the aerogel volume with sufficient path length to
have radiated photons. We also require that the track has a momentum above 2.0 GeV/c,
the kaon momentum threshold in the aerogel. This is to ensure that we only include tracks
for which the aerogel can differentiate between the kaon and proton mass hypotheses.

CF4 C4F10 Aerogel
π threshold [GeV/c ] 4.4 2.6 0.6
K threshold [GeV/c ] 15.6 9.3 2.0
p threshold [GeV/c ] 29.7 17.7 3.8

Table 3.5: The momentum thresholds for pions, kaons and protons in each radiator in the RICH
system.
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3.6.3 Results

The numbers of proton and kaon tracks used in the study are provided in Table 3.6. For
these tracks the normalised log (Lp/LK) distributions are provided in Figure 3.24. There
is a significant separation between the low momentum kaon and proton tracks in 2012
which is not present in 2011. Scanning across the log (Lp/LK) distributions and counting
the fractions of the surviving species, we can derive identification and mis-identification
rates for the protons and kaons.

These receiver operating characteristics are provided in Figure 3.25 for the full datasets,
both for low momentum and for the momentum range covered by the gas for comparison.
In 2011 the low momentum discrimination is consistent with random guessing (indicated
by the dashed red line). In 2012 there is a significant improvement in the discrimination
between the proton and kaon species at low momentum. However, the discrimination
is seen in all cases to be far less powerful at low momentum than at high momentum,
for the data gathered in 2011 and 2012. This is to be expected due to the significantly
higher photon yield in the gas radiators and the much lower θC of the gas radiators. The
Cherenkov rings are more distinct due to the higher photon yield and due to the lower
radius of the rings, which cover a lower area and are subject to lower backgrounds from
false detections and intersections with other rings.

As the RICH performance is dependent on occupancy, the distributions are split by
the number of tracks in the global event. The resultant receiver operating characteristics
for ranges of detector occupancy are shown in Figure 3.26. The expected improvement in
discrimination at lower levels of detector occupancy is observed in 2012, but in all cases
the 2011 distributions of the low momentum sample are consistent with random guessing.

Year Species N (2.0 – 9.3 GeV/c) N (9.3 – 100 GeV/c)

2012 p 5.4× 106 145× 106

K 2.5× 106 63× 106

2011 p 5.9× 106 108× 106

K 2.0× 106 49× 106

Table 3.6: The momentum thresholds for pions, kaons and protons in each radiator in the RICH
system.
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Figure 3.24: The log (Lp/LK) distributions of the kaons and protons used in the studies of aerogel
performance. A notable improvement in the separation of the low momentum distributions is
observed in 2012 compared to 2011.

3.6.4 Summary

The aerogel performance was investigated through examination of the log (Lp/LK) response
of proton and kaon trakcs at low momentum, where the only possible discrimination to
the RICH information on these tracks is provided by the aerogel. The resultant receiver
operating characteristics which were derived were the first data-driven metric of the
aerogel performance, using pure datasets of charged tracks with very high statistics. This
quantitatively demonstrated that the introduction of the aerogel box in 2012 markedly
improved the aerogel performance.

Even with this increase in performance, the discrimination is extremely limited com-
pared to that afforded by the gas radiators. Under the best possible conditions, with the
number of tracks in the global event below 100, the efficiency of a proton enhancing cut of
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Figure 3.25: The receiver operating characteristics of the kaons and proton discrimination using
the log (Lp/LK) estimator, shown in the black continuous line. The dashed red lines indicate the
rates expected from random guessing. A notable improvement in the discrimination of the low
momentum protons and kaons is observed in 2012 compared to 2011.

log (Lp/LK) > 0 has an efficiency of 59.1 % with a kaon misidentification rate of 44.2 %.
The information derived from this study helped inform the LHCb Collaboration’s eventual
decision to remove the aerogel from the RICH system for the LHC run III, which will
commence in 2015. This will reduce the material budget of the RICH system considerably,
and with a higher volume of C4F10 in the active area the photon yield from the RICH1
gas will be accordingly higher.
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Figure 3.26: The receiver operating characteristics of the kaon and proton discrimination using
the log (Lp/LK) estimator, shown in the black continuous line, split by the number of tracks in
the global event. Shown in (a) is the characteristic for 2011 data, shown in (b) the characteristic
for 2012 data. The dashed red lines indicate the rates expected from random guessing. The
expected improvement in discrimination at lower levels of detector occupancy is observed.
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3.7 Chapter summary

The particle identification system at LHCb provides powerful discrimination between
different species of charged hadrons, with a high identification efficiency and low mis-
identification rates. PID selections at LHCb are powerful, but given that the LHCb
simulation of PID discriminant estimators generated from the RICH information only
includes average parameters that are different to the actual parameters of the RICH gases
determined by the environmental conditions during data taking, a data-driven approach is
favoured for the efficiency correction of such selections.

Presented is a new calibration dataset of pure proton tracks derived from Λ+
c → pK−π+

decays to supplement existing proton calibration samples from Λ0→ pπ− decays. These
new calibration tracks have higher transverse momenta than those previously available,
which allows for the first time the data-driven calibration of PID selections on protons with
high pT, as is the case with protons from heavy-flavour decays. Helicity information on
the Λ+

c → pK−π+ decay is used to veto combinatoric background and drastically improve
the purities of the selected samples.

The datasets of tracks of different species gathered to aid in PID calibration were used
to evaluate the performance of the aerogel radiator in the RICH system, by exploiting
the momentum range where the aerogel can provide discrimination between kaons and
protons but the gas radiators may not. These results were the first unbiased, data-driven
metric of the aerogel performance available to the collaboration, and were influential in
the decision to remove the aerogel from the RICH1 detector during run II data taking.
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Chapter 4

Λ+c → phh′ relative branching fractions

4.1 Introduction

The Λc is a charmed baryon of mass 2286.46 ± 0.14 MeV [10]. The decays of charmed
baryons can be used to study colour suppression of W+ exchange diagrams. Table 4.1 re-
produces the current knowledge of the relative branching ratios of Λ+

c → phh′ decays, where
hh′ ∈ {K−π+, K−K+, π−π+, π−K+}, as collected by the Particle Data Group (PDG) [10].
In 2011, LHCb collected significantly larger samples of the three hitherto observed Λc

decays than those gathered in previous measurements.
The candidate led an analysis to measure the branching fractions of Λc to a proton and

two charged hadrons, without hyperon mediation. The aim of the analysis was to measure
the branching ratios of the three suppressed modes with respect to the Cabibbo-favored
(CF) mode Λ+

c → pK−π+ with the best statistical precision to date. This goal entails
the first observation of the doubly Cabibbo-suppressed (DCS) decay mode Λ+

c → pπ−K+.
This search was conducted blindly by remaining ignorant of all Λ+

c → pπ−K+ candidates
reconstructed with a mass within ± 25 MeV of the world-average Λ+

c mass until the analysis
procedure was finalised.

The need to finalise the analysis procedure prior to unblinding the DCS mode requires
the analysis procedure to be developed utilising control modes. The singly-Cabibbo
suppressed (SCS) modes Λ+

c → pK−K+ and Λ+
c → pπ−π+ are good candidates for control

modes, however, as indicated in Table 4.1, the relative branching fractions of these modes
are known with poor precision. We worked to obtain the requisite confidence in our
analysis methods by simultaneously examining samples of Λ+

c → phh′ decays where the Λc
is produced at the primary interaction vertex (PV) and where it is produced in semileptonic

92



Mode BF Refs Note
Λ+
c → pK−π+ (5.0± 1.3)× 10−2 [86–88] Derived from B(B→ Λ+

c X)

→ pK
∗
(892)0 (1.6± 0.5)× 10−2 Inclusive K∗(892)0

→ ∆(1232)++K− (8.6± 3.0)× 10−3

→ Λ(1520)0π+ (1.8± 0.6)× 10−2 Inclusive Λ(1520)0

→ pK−π+ nonresonant (2.8± 0.8)× 10−2

Λ+
c → pπ−π+ (3.5± 2.0)× 10−3 [89]
→ pf0(980) (2.8± 1.9)× 10−3 Inclusive f0(980)

Λ+
c → pK−K+ (7.7± 3.5)× 10−4 [90, 91]
→ pφ (8.2± 2.7)× 10−4 Inclusive φ
→ pK−K+ non-φ (3.5± 1.7)× 10−4

Λ+
c → pπ−K+ < 2.3× 10−4 [92] CL = 90%

Table 4.1: World-average branching fractions for Λ+
c → phh′ decays as recorded in the 2012 PDG

Review of Particle Properties [10]. Where noted, the PDG has adjusted the branching fractions
for resonant decays to include all final states of the indicated resonances, not just the phh′ final
state of interest.

Λ0
b decays. The two samples are statistically independent and have different production,

triggering, and selection mechanisms.
In this thesis, Chapter 4 outlines the datasets and simulated samples used, the selection

of candidates and the investigation of peaking backgrounds. Chapter 5 then outlines the
efficiency corrections and yield extractions in the analyses. Chapter 6 then provides the
sources of systematic uncertainty in the analysis. We then give the methods utilised for
extracting confidence intervals for the yield of Λ+

c → pπ−K+ and gives the final branching
fraction results in the analysis.

4.2 Data and processing

4.2.1 LHCb data set

The measurements described here are based on 1024.8± 35.9 pb−1 of
√
s = 7 TeV p – p

collisions observed with the full LHCb detector [98]. The data was collected throughout
2011 under varying beam, detector, and trigger conditions. We use all of the available
data that has been marked OK by data quality checks. For the prompt analysis, we find
588.2± 20.6 pb−1 with the magnet polarity down (MagDown) and 435.7± 15.2 pb−1 for
the magnet polarity up (MagUp). For the SL analysis, we find 589.4± 20.6 pb−1 for the
MagDown polarity and 435.5± 15.2 pb−1 for the MagUp polarity.
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4.2.2 Monte Carlo samples

We use Monte Carlo (MC) events from the LHCb full event and detector simulation for
signal and background studies and to estimate reconstruction and selection efficiencies. To
replicate the selections applied to the real data we use modified versions of the stripping
selections which have all PID selection criteria removed, such that the PID selection may
be replicated without reliance on the poorly modelled PID discriminants in the simulation.
All other selection criteria remain the same as those in the version of the stripping run on
real data.

The simulation utilised in the analyses employ one of two generator-level cuts, applied
at the EvtGen level. These are:

DaughtersInLHCb - This requires all charged daughters in the generated decay to be
produced in the range 0.01 rad < θcharged < 0.4 rad of the z-axis and all neutral
daughters to be produced in the range 0.005 rad < θneutral < 0.4 rad of the z-axis.

LHCbAcceptance - This requires the head particle/mother of the specified signal decay to
be produced in the range 0 < θsignal < 0.4 rad of the z-axis.

All generated MC samples utilise the DaughtersInLHCb cut, with the exception of the
semileptonic CF Λ+

c → pK−π+ which utilises the LHCbAcceptance cut.
The prompt Λ+

c → phh′ MC samples were generated without a resonance structure.
All decays in the simulation for both analyses proceed via. the PHSP EvtGen decay
model [113]. The generated decays accordingly populate the phase space uniformly. A
fraction of the prompt MC events contain only Λ+

c produced in b-hadron decays. In order
to ensure that the efficiencies computed from the prompt MC samples are well defined,
we process these samples with a filter that retains only events that contain a promptly
produced signal decay. The filter traces the ancestry of the generated signal Λ+

c . If any of
its ancestors has a mean lifetime longer than 0.1 fs then it is classified as not-prompt.

The semileptonic simulation used for the CF mode Λ+
c → pK−π+ include an admixture

of pure phase-space and pseudo-resonance structure of the decay generated according to
the following fragment of EvtGen code:

Decay MyLambda_c+

0.02800 p+ K- pi+ PHSP;

0.01065 p+ Myanti-K*0 PHSP;

0.00860 Delta++ K- PHSP;

94



0.00414 MyLambda(1520)0 pi+ PHSP;

Enddecay

The semileptonic samples of the SCS decays Λ+
c → pK−K+ and Λ+

c → pπ−π+ also in-
clude an admixture of pure phase-space and pseudo-resonance structure. In the sample used
for Λ+

c → pK−K+ 48.4% of the signal Λ+
c undergo a pure phase space decay Λ+

c → pK−K+

and the remaining 51.6% decay through an intermediate φ resonance, Λ+
c → pφ(K−K+). In

the sample used for Λ+
c → pπ−π+, 55.6% of the signal Λ+

c undergo a pure phase space decay
Λ+
c → pπ−π+ and the remaining 44.4% decay through an intermediate f0(980) resonance,

Λ+
c → pf0(980)(π−π+).

4.3 Selection

Herein we outline the selection of candidate Λ+
c → phh′ decays in the prompt and semilep-

tonic analyses. Selection takes place at several levels: at the stripping, trigger and offline
selections. The central gathering of interesting decays is known as the “stripping” selection,
and its purpose is to gather decays of interest in a general fashion, such that several
different measurements may be performed using the same decay mode. In the central
processing of data, the stripping lines have a finite bandwidth. They must therefore
make an initial selection of the decays for general purpose which preserves as much signal
as possible while keeping the retention of candidates within acceptable limits. A rigid
selection of trigger requirements is enforced in this analysis such that the efficiency of
the trigger selections can be reliably measured. Finally, a further selection is made to
adapt the selection in the stripping for the specific needs of this analysis, called the “offline”
selection. This includes a multi-variate selection for use in selecting the rare decays of
Λ+
c → pπ−K+.

4.3.1 Stripping and trigger of prompt data

Stripping

The stripping selection reconstructs the general pattern Λ+
c → phh′. Table 4.2 lists the

selection criteria applied at the stripping level. The main goals of the selection are to
preserve signal while vetoing combinatoric backgrounds and backgrounds from other charm
decays. The multiplicity of LHCb events is high due to the hadronic production environ-
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ment. Consequently, cuts on the impact parameter (IP) of reconstructed heavy-flavour
particles are often a useful discriminant in rejecting the large combinatoric backgrounds
from unrelated tracks. Due to the short Λc lifetime (approximately 200 fs) relative to the
D and B mesons, this approach provides less discriminatory power over the rejection of
combinatorics.

We therefore utilise a suite of tight cuts on the momenta (p) and transverse momenta
(pT) of the candidate daughters. The requirement is made that all candidate daughters have
a significant impact parameter with respect to the primary interaction. A cut is specifically
placed upon the minimum daughter IPχ2, which is the increase in the associated primary
vertex χ2 when the daughter track is included in the primary vertex fit. PID selection is
also employed at this stage to reduce the retention of the stripping line while vetoing a
large number of candidates which are combinations of unrelated tracks. Requirements are
made that the reconstructed tracks are of a high quality, specifically that the maximum
normalised track χ2 be below a given threshold and that the “Clone distance”, a quantity
based on the Kullback-Liebler distance between tracks [133], must exceed a given value to
remove clone tracks which do not share common hits.

All permutations of pairs of the daughter tracks should have a reconstructed distance
of closest approach (DoCA) no greater than a maximum threshold. Requirements are
placed on the Λc vertex quality and on the distance between the Λc decay vertex and the
primary vertex. We require that the Λc candidate points back to the primary interaction
by placing a minimum requirement on the cosine of the angle between the reconstructed
Λc momentum and the displacement vector between the primary vertex and the Λc decay
vertex, a quantity referred to as the DIRA. We require that the reconstructed candidate
has a computed lifetime below 1.2 ps, which preserves most Λc signal while vetoing
significant amounts of meson decays which are misreconstructed. Finally we require the
candidate mass to be within 90 MeV/c2 of the nominal PDG Λc mass.

Trigger

While a dedicated HLT2 trigger line operated in 2011 for the Λ+
c → pK−π+ mode, there

were no such lines for the prompt SCS and DCS Λc decays for 2011. In order to have
a consistent trigger chain for the four modes we adopt the trigger requirement that the
event was triggered independently of the Λc candidate, or Triggered Independently of
Signal (TIS). The efficiencies of TIS chains are typically very low, but a TIS chain provides
the benefit of trigger efficiency cancellation between the Λ+

c → phh′ modes. The specific
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Variable name Stripping
h± Track χ2/Nndf < 5

Clone distance > 5000
IP χ2 > 4, 8
pT > 400, 1200 MeV/c
|~p| > 3.2 GeV/c

p log (Lp/Lπ) > 5
K log (LK/Lπ) > 5
π log (LK/Lπ) < 0
hihj DoCA < 0.10 mm

Λ+
c Vertex χ2/Nndf < 20

VD χ2 > 16
DIRA > 0.9999
Proper time τ ∈ [0, 1.2] ps
|mphh′ −mΛ+

c PDG| < 90 MeV/c2

Table 4.2: Selection criteria for prompt Λ+
c → phh′ candidates in the stripping selection. h denotes

the pion, kaon, or proton product of a Λ+
c decay and is used to indicate cuts that are applied to

all three. Where two values for the daughter h pT lower limit are indicated, all three daughters
are required to satisfy the looser cut and at least one of the daughters must satisfy the tighter
cut. hihj denotes every pairing of the daughters.

requirements are that any L0 trigger was fired independently of the Λc candidate, and that
the event was triggered by at least one of a collection of physics analysis trigger algorithms
in the HLT independently of the Λc candidate.

4.3.2 Stripping and trigger of semileptonic data

Stripping

Each of the stripping lines in the semileptonic analysis reconstruct candidates according
to the pattern Λ0

b→ Λ+
c µ
±, Λ+

c → phh′. Table 4.3 lists the selection criteria applied at
the stripping level. The selection requirements on the Λ+

c → phh′ component of the
reconstruction are broadly similar to that used in the prompt analysis, but with looser
momentum requirements placed upon the daughters. The relaxation of these cuts is
possible due to the additional discrimination acquired from information on the Λ0

b decay.
The minumum requirement on the Λc daughter IPχ2 is raised, as the daughters of the
semileptonically-produced Λc decays have higher impact parameters than for daughters
of those Λc which are produced promplty at the primary interaction. Similar selection
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criteria are applied to the reconstructed Λc candidates as are applied to those in the
prompt analysis.

Variable name Stripping
h± Track χ2/Nndf < 4

Clone distance > 5000
IP χ2 > 9
pT > 300
|~p| > 2 GeV/c

p log (Lp/Lπ) > 4
log (Lp/LK) > 10−10

K log (LK/Lπ) > 4
π log (LK/Lπ) < 10
π for Λ+

c → pπ−π+ log (LK/Lπ) < 0
hihj DoCA χ2 < 20

Λ+
c Vertex χ2/Nndf < 6

pTp + pTh + pTh′ > 1800 MeV/c
VD χ2 > 100
DIRA > 0.99
|mphh′ −mΛ+

c PDG| < 80 MeV/c2

µ Track χ2/Nndf < 4
IP χ2 > 9
pT > 800 MeV/c
|~p| > 3 GeV/c
log (Lµ/Lπ) > 0

Λ0
b Vertex χ2/Nndf < 6

zΛ+
c
− zΛ0

b
> −9999 mm

DIRA > 0.999
mΛ+

c µ
∈ (2.5, 6) GeV/c2

Table 4.3: Stripping selection criteria for the semileptonic Λ0
b→ Λ+

c µ
±, Λ+

c → phh′ candidates in
the analysis. h denotes the pion, kaon, or proton product of a Λ+

c decay and is used to indicate
cuts that are applied to all three. hihj denotes every pairing of the daughters.

Muon candidates are required to pass a series of track quality and kinematic require-
ments. The tracks are also required to have associated hits in all muon stations. The
Λc candidates and muon candidates together form Λ0

b candidates which are required to
form a common vertex which is significantly displaced in z from the primary vertex. The
Λ0
b candidate is also required to point back to the primary interaction. As the neutrino

in the decay is not reconstructed, the mass of the reconstructed Λc µ system is allowed
to be significantly lower than the Λ0

b nominal mass, with a permitted mΛcµ range of

98



2.5 – 6.0 GeV/c.

Trigger

For the semileptonic decays we use a trigger requirement that focuses on the muon in
the Λ0

b decay and thus reduces the relative bias on the Λ+
c decay phase space. The muon

in the Λ0
b decay is required to have triggered the L0 muon trigger for that event. The

Λ0
b candidate is required to have triggered at least one of a series of algorithms in the

HLT, designed to select decays of heavy-favour hadrons to final states including muons by
exploiting the decay topology.
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4.3.3 Offline selection

The offline selection is designed to taylor the output of the general-purpose datasets from
the stripping selection output and adopt the selection for the specific purposes of our
analysis. All offline selections are trained using 10% of the Λ+

c → pK−π+ data from each
respective analysis. The sPlots method [126] is used to extract the signal and background
distributions from the data. This data is then excluded from the remainder of the analysis,
with an appropriate scaling factor included in the final branching fraction calculations. It is
desirable to utilise the same offline cuts in the selection of all four modes for the cancellation
of systematic uncertainties. The selections therefore are all trained to maximise sensitivity
to the unobserved doubly-Cabibbo suppressed mode. To this end an additional global
signal weighting of

|Vus|2|Vcd|2
|Vcs|2|Vud|2

≈ 0.003, (4.1)

which is a crude indication of the expected relative rate of Λ+
c → pπ−K+ over Λ+

c → pK−π+,
was applied in the trainings. Examination of the sidebands of the Cabibbo-favoured and
doubly-Cabibbo suppressed data indicate that the combinatoric background in the doubly-
Cabibbo suppressed mode is approximately 33 % lower than that in the Cabibbo favoured
mode, as shown in Figure 4.3. This is taken into account in the selection training by
applying a global combinatoric background weight of 0.67.

The output from the stripping lines contain a high combinatoric component, which
must be further reduced in order to accurately fit the mass distributions. The mass
distributions at stripping level for the modes which are not blinded are shown in Figure 4.1
for the promptly selected candidates and Figure 4.2 for the semileptonically selected
candidates. This necessitates the use of cuts on the PID varibles to veto combinatorics
from wrongly identified particles. Selection training has shown that PID DLL variables
possess the greatest discrimination between signal and combinatoric background (compared
to track/vertex quality, event kinematic info etc.). These are simultaneously optimised
using the CROP tool, and performed in both the prompt and the semileptonic selections.
The optimisations use the training figure of merit S/

√
S +B, where S and B are the sums

of the signal and background weights respectively.
The efficiencies of some stages of the selection must be evaluated on an event-by-event

basis. The stripping selection efficiency, for example, must be calculated by assigning a
per-candidate local efficiency depending on the candidate’s location in the phase space
parameterising the resonant Λ+

c → phh′ decay (see Section 5.1.5). The sPlots method is
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Figure 4.1: The mass distributions of the raw prompt stripping output, before the application of
trigger cuts.

used for background subtraction in all yield extractions. In order to preserve the event
weight normalisation, each selected Λc candidate must have daughter kinematics which
correspond to a valid region of the decay phase space, such that a valid stripping efficiency
may be assigned to the event.

To ensure each Λc candidate has valid daughter kinematics the DecayTreeFitter tool
[134] is employed. In contrast to typical pattern reconstructions, which begin with the
final daughters and work backwards to form parent particles, this tool simultaneously fits
the entire decay chain using information on the momenta and vertex positions, and is able
to utilise constraints using nominal particle masses. Our implementation uses a constraint
on the Λc mass and no primary-vertex constraint. Convergence of the DecayTreeFitter
algorithm is made necessary for an event to pass the selection. This has a minimal effect
on the signal region, and primarily vetos events in the high mass sideband. The effect
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c → pπ−π+

Figure 4.2: The mass distributions of the raw semileptonic stripping output, before the application
of trigger cuts.

of this convergence criterion is demonstrated in the promptly selected Λ+
c → pK−π+ in

Figure 4.4. This criterion is applied to both the prompt and semileptonic selections.
In order to ascertain the efficiencies of the PID DLL cuts used in the selections it is

necessary to utilise the data-driven PIDCalib technique. This technique uses calibration
tracks from decay modes which may be cleanly reconstructed without the use of the PID
discriminants. These tracks are binned in p and η to derive local PID efficiencies, which
are then used to ascribe event-by-event PID efficiencies to the signal decays in this analysis
(this procedure is outlined more fully in Section 5.1.6). There exist regions of the p – η
phase space for which Λ+

c → phh′ signal tracks exist, but for which no calibration data
exists. This is due to the lower pT of protons in Λ0→ pπ− decays than those protons in
Λ+
c → phh′ decays. In such regions it is impossible to attribute a PID efficiency to the

signal data. It is therefore necessary to include a variety of fiducial cuts on the kinematics
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of the doubly-Cabibbo suppressed over the Cabibbo favoured gives combinatoric background
ratio of 0.67.
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Figure 4.4: Mass distributions of promptly selected Λ+
c → pK−π+ before (a) and after (b) the

application of the DTF configuration and convergence criterion.

of the daughter tracks in the Λ+
c → phh′ signal decays to exclude Λc candidates with

daughter particles falling in such regions. This ensures a reliable PID efficiency is ascribed
to each event of the signal data. The vetoed regions are given in Table 4.4, and illustrated
in Figure 4.5. The vetoes exclude between 15 – 30 % of signal candidates varying on a
per-mode basis.
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Daughter Particle Vetoed Regions
π η < 2.0, η > 4.5, p < 5GeV/c2, p > 100GeV/c2

K η < 2.0, η > 4.5, p < 5GeV/c2, p > 100GeV/c2

p
η < 2.0, η > 4.5, p < 15.6GeV/c2, p > 100GeV/c2,
(2.0 < η < 2.625 and p > 29.3GeV/c2),
(2.625 < η < 3.25 and p > 44.83GeV/c2)

Table 4.4: Kinematically vetoed regions of the p and η phase space such that the data-driven
PIDCalib method may be properly utilised.
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Figure 4.5: Kinematically vetoed regions of the p and η phase space for promptly selected protons.
White bins indicate vetoed regions, coloured bins give the average efficiency of the PID DLL cuts
on proton tracks in that region, as evaluated using the Λ0→ pπ− PID calibration samples.

Offline selection of prompt candidates

The Λc mean lifetime is 200fs [10], which is much lower than that of charmed mesons (for
example, the D+ mean lifetime is 1040ps). Due to the resultant low separation of the Λc
decay vertex with respect to the primary vertex, combinatoric backgrounds resulting from
combinations of unrelated tracks are large in the case of promptly produced Λc. In order
to suppress these backgrounds, a multivariate selection is used in tandem with the offline
PID DLL cuts in the selection of Λ+

c → pπ−K+ candidates.
Multivariate selections combine information from numerous input variables describing

a process and combine it to form one variable. When attempting to discriminate between
multiple species in a sample, a simple selection placed on the multivariate can possess
much greater discriminatory power than simple selections placed upon the input variables.
A decision tree (BDT, [135]) consists of a branching tree of nodes. Starting from one node,
a simple selection requirement is made on one or a combination of the input variables with
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a binary output. Each output leads to a separate node whereby another requirement is
made. Ultimately at the final nodes signals are assigned a value corresponding to their
likelihood of being each species. A boosted decision tree (BDT [136]) consists of a series
of trees in a “forest”, whereby the architecture of each tree is informed by the outcomes of
the previous trees. Several algorithms exist to dictate the development of the forest, or
the “boosting”. One such algorithm, ADABOOST [137] , assigns greater weights for a
given tree in the training phase to events which were misclassified in previous trees.

A boosted decision tree was trained using the ADABOOST adaptive boosting al-
gorithm on the Λ+

c → pK−π+ data. The sPlots technique is utilised to disentangle the
signal and background input variable distributions. The training and testing of the BDT
was performed in TMVA [138]. Initially the TMVA default values for BDT architecture
were utilised. The input variables were chosen such that the selection possesses minimum
sensitivity to the kinematics of the daughter particles in the Λc decay to ensure the BDT’s
selection of events has a uniform efficiency across the decay modes. These variables are:

• Reconstructed Λc pT.

• Λc maximum DoCA, the distance of closest approach between any of the possible
pairs of particles in the Λc decay.

• Λc DIRA, the direction angle of the reconstructed Λc momentum w.r.t. the direction
of flight to the best primary vertex.

• Λc end vertex χ2.

• Λc flight distance χ2 with respect to the primary vertex.

• Λc IPχ2, the impact paramter χ2 w.r.t. the best primary vertex, or the increase to
the χ2 of the associated primary vertex when the reconstructed Λc momentum is
included in the primary vertex fit.

The distributions of these variables for signal and background for the prompt selection
training sample, before the offline PID cuts, are given in Figure 4.6. These are acquired
using the sPlots technique to extract the signal and combinatoric distributions.

In the selection of the Cabibbo favoured and singly-Cabibbo suppressed modes, we
do not apply any MVA offline selection but do apply offline PID cuts. In the selection of
Λ+
c → pπ−K+ candidates, the offline PID cuts and the BDT itself are optimised in tandem

recursively to attain the most powerful discrimination attainable. This procedure involves
the following steps:
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Figure 4.6: BDT input variables distributons for signal and combinatoric background, from the
promptly selected Λ+

c → pK−π+ training sample.

1. A BDT is trained on the training sample without any offline PID cuts applied.

2. The BDT response cut is then optimised in CROP with the cuts on the PID DLL
variables, using S/

√
S +B as a figure of merit. As the PID cuts will exclude some

background events which the BDT is trained to exclude, the BDT will not be
optimally trained for a selection in conjunction with the PID DLL cuts.

3. A new BDT is then trained on a data sample which has had the optimum PID DLL
cuts as found in step 2 applied as a preselection. The new BDT response cut is then
optimised in CROP in tandem with the cuts on the PID DLL variables to find new
optimum PID cuts for this tree architecture.

4. This process is repeated, with new BDTs being trained until the optimum PID
response as found by CROP converges.

At this point we can at the very least say that a local maximum in the N-dimensional
cutspace has been found. A cross check is carried out to look for higher maxima of signal
significance. A set of arbitrary PID cuts are applied to the training sample initially, and
the simultaneous PID/BDT optimisation is reperformed. The arbitrary PID cuts used are:

• proton DLL(p - π) > 10.
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• proton DLL(p - K) > 10.

• kaon DLL(K - π) > 8.

The same optimum PID and BDT cuts are attained, demonstrating that the maximum
found is likely a global maximum.

At this stage an optimisation of the tree architecture takes place. The optimisation
process takes into account both signal and background discrimination and the compatibility
of the BDT response between the training and testing phases (as evaluated with a
Kolmogorov Smirnov test [139] by TMVA). The former should be maximised for obvious
reasons. The latter gives an indication of the level of overtraining, where the training
phase becomes sensitive to the statistical fluctuations in the training sample, leading to a
sub-optimal MVA architecture. The variables defining the tree architecture which were
optimised are:

Ntrees - The number of trees in the forest.

Boost type - The algorithm which determines the boosting procedure.

Adaptive Boost β - The learning rate for the adaptive boost algorithm.

Maximum Tree Depth - The maximum depth of the trees, or depth of nodes per tree.

Steps in Node Optimisation - At each node in the tree the data is split according to
a binary decision based on the input variable of interest at the node. This variable
is the number of steps in the variable range used to find the optimum splitting point
at each node.

The optimum values of these parameters are given in Table 4.5.
The final BDT classifier output, overtraining check and ROC curve are shown in

Figure 4.7. The final PID DLL and BDT response cuts are given in Table 4.6. Assuming
the naive expected ratio of doubly-Cabibbo suppressed to Cabibbo favoured decays, the
maximum S/

√
S + B significance of the promptly selected Λ+

c → pπ−K+ may be estimated.
After the final PID cuts, this is done by summing the signal and background weights and
varying the BDT response to find the optimum cut.

The tighter offline PID cuts used in the selection of all prompt modes (along with the
semileptonic PID cuts) are given in Table 4.6.
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Table 4.5: The BDT architecture variables which were optimised, showing the default and
optimum values.

Architecture Variable Default Value Tested Values Optimum Value
Boosting Type Adaptive Adaptive, Gradient, Bagging Adaptive
Adaptive Boost β 0.5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0 0.3
Ntrees 400 10, 20, 40, 50, 80, 100, 150, 200, 300, 400 50
Maximum tree depth 3 2, 3, 4, 5 3
Steps in Node Optimisation 20 10, 12, 14, 16, 18, 20, 22, 24, 26 20

Signal efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
a
c
k
g

ro
u

n
d

 r
e
je

c
ti

o
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:

Final_BDT

Background rejection versus Signal efficiency

(a)

Final_BDT response

­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6

d
x

 / 
(1

/N
) 

d
N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov­Smirnov test: signal (background) probability = 0.977 (0.228)

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

TMVA overtraining check for classifier: Final_BDT

(b)

Figure 4.7: The receiver operating characteristic (ROC) curve (a) and the classifier output
distributions for the training/testing phases (b) for the final BDT. The Kolmogorov-Smirnov
tests for compatibility in the training and testing phases indicate that the training and testing
sample distributions agree in both signal and background.

Offline selection of semileptonic candidates

The higher separation from the primary vertex in semileptonically produced Λc over those
produced promptly, due to the high mean lifetime of the Λ0

b (approximately 1500 fs),
results in a much lower combinatoric background in the semileptonic data. Investigation of
multivariate analysis and of further rectangular cuts on kinematic properties of the Λ0

b and
Λ+
c decays over those in the stripping demonstrated no significant gains in discrimination

between signal and combinatoric backgrounds. Tighter cuts on the PID DLL variables
compared to those in the stripping were shown to offer significant discrimination. As such
PID DLL cuts were optimised in CROP for maximum sensitivity to the Λ+

c → pπ−K+

mode, with the optimum cuts shown in Table 4.6. It should be noted that the tighter PID
cuts in the semileptonic Λ+

c → pπ−π+ come from the stripping line for this mode, and are
very sub-optimal for the other Λ+

c → phh′ modes. As such these are the only differences in
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offline selection between the semileptonic modes.

Selection Particle PID Cuts

Prompt Λ+
c → phh′

p DLL(p−π) > 20,DLL(p−K) > 12
K DLL(K−π) > 10,DLL(K−p) > −8
π DLL(K−π) < 0

SL Λ+
c → pπ−π+ p DLL(p−π) > 20,DLL(p−K) > 9

π DLL(K−π) < 0

Other SL Λ+
c → phh′

p DLL(p−π) > 20,DLL(p−K) > 9
K DLL(K−π) > 10
π DLL(K−π) < 10

Table 4.6: The final PID cuts used in each of the selections in the analysis.
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4.3.4 Mass spectra

The mass spectra at each stage of selection are given herein to demonstrate the effects of
the selection at each stage. These are given in Figure 4.8 – Figure 4.13. The mass range is
centred on the nominal Λc mass ± 80 MeV/c2. The terms in the legend are as follows:

Raw - The mass spectra of all stripped candidates, i.e. the raw output of the stripping
selections.

Trigger - The mass spectra of the stripped candidates which pass the trigger requirements.

Trigger and PID - The mass spectra of the stripped candidates which pass the trigger
requirements and the tight offline PID cuts.

Full Selection - The mass spectra of the stripped candidates passing the trigger, offline
PID, kinematic vetoes and DTF convergence requirement.

In the prompt, the TIS trigger chain vetoes very few candidates. This is expected due to
the lack of dedicated Hlt2 lines for the Cabibbo-suppressed modes and the inefficiency
of the Cabibbo-favoured dedicated Hlt2 line - what prompt Λ+

c → phh′ LHCb recorded
in 2011 was almost entirely triggered independently of the Λc decay. In the semileptonic,
the effect of the TOS chain is to veto a large amount of background while vetoing a
relatively lower signal fraction - this is to be expected given the signal-enhancing cuts
in the topological trigger. In both analyses the background is reduced considerably with
the application of the PID cuts. The kinematic vetoes can be seen to veto signal and
background indiscriminately, while the DTF convergence requirement results in candidates
at high masses being vetoed in those channels with kaons in the final state.
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Figure 4.8: The mass distributions of the prompt Λ+
c → pK−π+ for each stage of selection.
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Figure 4.9: The mass distributions of the prompt Λ+
c → pK−K+ for each stage of selection.
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Figure 4.10: The mass distributions of the prompt Λ+
c → pπ−π+ for each stage of selection.
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Figure 4.11: The mass distributions of the SL Λ+
c → pK−π+ for each stage of selection.
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Figure 4.12: The mass distributions of the SL Λ+
c → pK−K+ for each stage of selection.
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Figure 4.13: The mass distributions of the SL Λ+
c → pπ−π+ for each stage of selection.
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4.4 Prompt backgrounds

Herein we discuss the potential backgrounds in the prompt analysis. There are two broad
categories of backgrounds that our selections may be prone to: reflections from D+ decays
and Λc decays. There are a number of charmed meson decays which, if mis-reconstructed
in some fashion, may result in peaking backgrounds in the |lc candidate mass window
around the nominal. A brief summation of these are as follows (in all cases h refers to any
permutation of charged kaons and pions):

D+→ hhh/D+
s → hhh reflections - all the D+/D+

s daughters are reconstructed, but at
least one of the daughters are misidentified as another charged hadron.

D+→ hhhh0/D+
s → hhhh0 partial reconstruction - the neutral daughter hadron, for

example a π0 or K0
S , is not reconstructed and at least one of the charged daughters

is misidentified as another charged hadron.

D0→ hhhh partial reconstruction - one charged daughter is not reconstructed, and at
least one of the charged daughters is misidentified as another charged hadron.

The misidentification has the effect of smearing the candidate mass distribution and shifting
it from the nominal Λc mass in non-trivial ways depending on the decay kinematics. To
parametrise these distributions we apply our selection to simulated D decays while forcing
the required mass hypotheses on the set of D daughters such that candidates manifest
with a final state corresponding to one of the Λ+

c → phh′ modes under investigation.

4.4.1 D+
s → hhh/D+→ hhh mis-reconstructions

Method

There are a large number of D+/D+
s decays which, with a single final state kaon or pion

mis-identified as a proton, can lead to their manifestation in the same final state as one of
the Λ+

c → phh′ modes. To account for these D+→ hhh/D+
s → hhh reflections, we consider

the mis-identifications which can arise which will likely result in candidates in the region
of the Λc mass.

The possible reflections are constrained by one of the same-sign daughters being
mis-identified as a proton, resulting in only four generic cases whereby single mis-
identification reflections are relevant. As the number of decays which can result in
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such a mis-identification are numerous, we investigate first the modes which have the
highest branching fractions corresponding to these general cases of mis-identification.

These decays are outlined in Table 4.7. The most abundantly produced D+ mode in
which a pion mis-identification as proton is possible is D+→ π+π+K−, with a measured
branching fraction of (9.13± 0.19) % [140]. D+ decays with a same-sign kaon in the final
state require at least one Cabibbo-suppressed transition, and their branching fractions are
correspondingly lower. The most abundant of these is the decay D+→ π+K−K+, with a
branching fraction of (9.54± 0.26)× 10−3 [140]. The highest branching fraction of a D+

s

with a same-sign pion or kaon in the final state is in both cases the decay D+
s → π+K−K+,

with a branching fraction of (5.49± 0.27) % [141], [142].

D+→ hhh Mode D+ decay B [%] mis-ID Λ+
c → phh′ Mode

D+→ π+π+K− (9.13± 0.19)× 10−2 π+ → p Λ+
c → pK−π+

D+→ K+K−π+ (9.54± 0.26)× 10−3 K+ → p Λ+
c → pK−π+

D+
s → K+K−π+

(5.49± 0.27)× 10−2 π+ → p Λ+
c → pK−K+

D+
s → K+K−π+ K+ → p Λ+

c → pK−π+

Table 4.7: The decays which correspond to a D+→ hhh/D+
s → hhh reflection where a positive

charged kaon or pion is mid-identified as a proton. We provide the branching fractions and the
mis-ID corresponding to the Λ+

c → phh′ modes in which the reflections manifest. The decays
given possess some of the highest branching fractions of the D+/D+

s decays which can result in a
Λ+
c → phh′ final state under a single misidentification.

Efficiency and yield estimations

The numbers of simulated events passing the various stages of our selection are detailed in
Table 4.8. For all modes, zero events pass the full selection. A finite number of candidates
pass just the trigger and stripping, and a finite number of candidates pass just the stripping
and PID. As the trigger chain in the prompt analysis is TIS, the subset of events passing
the TIS requirement should not be dependent on the PID response. We can therefore
factorise the individual efficiencies to better estimate the overall efficiency of our selection
on the backgrounds. The full efficiency of the selection is therefore given as:

εtotal =
ε(strip,PID)ε(strip,trig)

εstrip
(4.2)

where εstrip is the efficiency of the stripping selection alone, ε(strip,PID) is the efficiency of
the stripping and PID selections and ε(strip,trig) is the efficiency of the stripping and trigger
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selections (as the stripping selection is applied to the baseline already it is necessary to
include it in both the expressions for the PID and trigger efficiencies and factor it out).
The efficiencies for the modes are shown in Table 4.9. Where non-zero numbers of events
pass orthogonal selection, we provide an efficiency as per Equation 4.2. If no events survive
any orthogonal selections, we provide upper limits. These efficiencies are rough calculations
- the PID efficiency is derived using the PID response in the simulation, which is known to
be poorly modelled. The numbers of events surviving the selections are very low, such that
the binomial errors on the efficiencies are high. Nonetheless, they serve as a reasonable
approximation when estimating the orders of magnitude of the efficiencies of our prompt
selection on the D decays. The efficiencies for the full prompt selection are estimated to
be of order O(10−9) – O(10−8) for the various D decays considered.

The prompt charm cross sections at
√
s 7 TeV at LHCb have been measured in [130].

Integrated over the LHCb acceptance, those relevant to this analysis are:

• σ(Λc) = 230± 77 µb

• σ(D+) = 676± 137 µb

• σ(D+
s ) = 194± 38 µb

• σ(D0) = 1488± 182 µb

Taking these, with the estimated efficiencies of our selection on the above D decays, we
can estimate the number of charged D reflections surviving the prompt Λc selection in the
2011 dataset. The typical expected D candidates passing our selection are estimated as:

Npass = LσBεD (4.3)

where L is the integrated luminosity of the 2011 dataset, σ is the production cross section
in the LHCb acceptance of the parent D, B is the branching fraction of the D decay
leading to the reflection and εD is the estimated efficiency of the prompt Λc selection on
the D decay. These are summarised in Table 4.10. The estimations for Npass are of the
order of 1000 for the decays considered.

This somewhat low yield is to be expected given our selection’s design. Tight PID cuts
are used on every final state daughter in the prompt selection. In addition to suppressing
combinations of unrelated tracks (of which there are many, due to the short Λc mean
lifetime and low PV displacement), these serve to eliminate the majority of mis-identified
reflections. The maximum lifetime cut on the reconstructed Λc candidate of 1.2 ps removes
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a significant fraction (approximately 35 %) of genuine D decays, which have a mean lifetime
of around 1 ps compared to 0.2 ps for the Λc. The minimum momentum requirement on
the proton of 15.6 GeV/c and the requirement that at least one daughter have a transverse
momentum above 1.2 GeV/c suppress the kaon/pion tracks which come from D decays
(the proton momenta in genuine Λc decays are typically greater than those of the D decay
daughters).

There are many components of our selection which will apply equally well to excluding
other D decays. The lifetime cut will uniformly veto the same fraction of all D decays.
The number of kaons and pions in the final state of each D decay will affect the momenta
of the final state particles, although this is not expected to be a large effect. As such,
to first order the efficacy of the momentum and PID requirements in vetoing other D
decays which have not been directly examined should be comparible to the modes which
were investigated. All other D decays which can result in final state reflections in the Λc
reconstruction have lower branching fractions than the decays investigated herein, resulting
in lower expected contamination in the 2011 Λc data. In the case of reflections arising
from two or three mis-identifications, we may assume that the tight PID cuts make it
significantly less likely that a D decay with multiple incorrectly identified daughter tracks
will pass our selection than in the case of a single mis-identification.

The number of reflection candidates expected to pass the selection for the highest D+

and D+
s branching fractions should not be a significant factor in our fitting procedure

if, as expected, they are spread across the full Λc mass window. We also provide the
ratio of the number of reflection candidates expected to pass full selection in 2011 to the
number of candidates in the corresponding Λ+

c → phh′ signal mode in which the reflection
manifests. Given that 3 of the 4 reflections possible from the high branching ratio D+/D+

s

decays considered manifest in the Cabibbo-favoured mode these reflection over signal
ratios are generally at the per-cent level, and negligible in this analysis given other limiting
systematics.
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Simulated mass distributions

We use the simulated data to investigate the shapes of the mass distributions of misrecon-
structed candidates. If the distributions do not peak within the Λc mass window, and have
shapes which can be well modelled by a first order polynomial, it may be safely assumed
that even if the number of D decays which pass our selection in this mass region is much
higher in reality than our calculations say, this contribution will be accounted for by the
fit model for the combinatoric background component.

As no simulated D decays pass our full selection, we investigate the shape of the mass
distribution of the mis-reconstructed D candidates at various stages of the selection. We
investigate the mass distribution after the stripping selection only, the mass distribution
after the stripping and PID selections, and the mass distribution after the trigger and
stripping selections.

An example of the D+ reflection mass distribution, D+→ K−π+π+, π+ mis-ID as p,
is given in Figure 4.14 for the full candidate mass distribution, with equivalent plots of
these quantites in just the Λ+

c stripping mass window given in Figure 4.15. As can be
seen, the candidates after stripping have mass distributions which either peak in the Λc
mass region (albeit with very broad peaks) or which are not flat in this region. As can
be seen in the distributions for candidates after stripping and PID and the distributions
after stripping and trigger these structures become flatter as the selection is applied. It
is therefore expected that the distributions of charged D reflections passing the full Λc
selection will be well modelled by a first order polynomial. Our combinatoric background
is also well described by a first order polynomial, and so any sum of these will simply be a
new first order polynomial, for which our fit model will account.
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Figure 4.14: The mass distributions of simulated D+→ K−π+π+ candidates with the proton
mass hypothesis forced upon one of the daughter pions. Shaded red lines show the Λc mass region
from the stripping. (a) has applied the stripping selection alone, (b) the stripping and PID, (c)
the stripping and trigger.
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Figure 4.15: The mass distributions of simulated D+→ K−π+π+ candidates with the proton
mass hypothesis forced upon one of the daughter pions. The mass region shown is that applied in
the Λ+

c → phh′ stripping. (a) has applied the stripping selection alone, (b) the stripping and PID,
(c) the stripping and trigger.
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4.4.2 Mis-ID in Λc decays

In the case of cross-feed between the different Λ+
c → phh′ modes, single mis-identification of

any daughter hadron is expected to result in a reconstructed mass distribution peaking away
from the Λc mass. Double and triple mis-identification in the singly Cabibbo-suppressed
modes is also expected to take the reconstructed candidate outside the mass range of
interest. For the Cabbibo favoured and doubly-Cabibbo suppressed modes, when the pion
is mis-identified as a kaon and the kaon is mis-identified as a pion, the mass distribution
peaks close to the Λc mass, although the distribution will be highly smeared from the
double mis-identification.

As the Λ+
c → phh′ real data has PID cuts applied at the stripping level, we use simulated

Λ+
c → phh′ decays for these studies. The samples have undergone the stripping selection

with PID cuts removed as described in Section 4.2.2. As in the case of the studies of D
reflections, we force the wrong mass hypothesis on one or more of the truth matched signal
decay daughters and recompute the invariant mass of the parent candidate.

Single mis-ID

The case of a single daughter mis-identification, as expected, results in mass distributions
outside of the signal region. These cases are shown in Figure 4.16, where no PID or trigger
requirements are placed on the samples. As the mass distributions all peak outwith the
range of interest we conclude that such cross feed between the Λ+

c → phh′ modes is not a
concern.

Double mis-ID

Considering that a single mis-identification of a daughter meson will result in a mass
outside the range of interest, it is expected that double mis-ID in the singly Cabibbo-
suppressed modes will result in a reconstructed candidate mass far from the true Λc mass,
and are of no concern. We investigate the case of double mis-ID in the Cabibbo favoured
mode, where both daughter mesons are incorrectly identified. Again, we find that no
simulated events survive the full selection. As such, we consult the mass distributions
of simulated Λ+

c → pK−π+ events with a mis-identification forced on both mesons in
the decay after the stripping selection only. Candidate mass distributions are given in
Figure 4.17, and demonstrated to be smeared uniformly over the stripping mass window.
These candidates are well-modelled by a first-order polynomial. We conclude that in the
case of possible Cabibbo-favoured decay contamination of the doubly-Cabibbo suppressed
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Figure 4.16: The mass distributions of simulated Λ+
c → phh′, with the wrong mass hypothesis

forced on one of the daughter mesons. The mass window indicated in red is that applied in
the Λ+

c → phh′ stripping. The selection applied is a version of the stripping with all PID cuts
removed, and no trigger requirements have been made.

decay, the candidates are sufficiently spread over the mass window that they will be
included in the background fit. We also conclude that it will be impossible for reflections
from a double mis-identification of Λ+

c → pK−π+ to imitate a narrow Λ+
c → pπ−K+ peak.
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Figure 4.17: The mass distributions of simulated Λ+
c → pK−π+, with the wrong mass hypothesis

forced on both of the daughter mesons. The mass region indicated in red in (a) is that applied
in the Λ+

c → phh′ stripping, (b) shows just this region. The selection applied is a version of the
stripping with all PID cuts removed, and no trigger cuts have been applied.
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4.4.3 Reassigning mass hypotheses in data

As a more direct check we reassign the mass hypotheses of the daughter particles in the
prompt Λ+

c → phh′ data, to those mass hypotheses which correspond to the final states of
all possible D reflections. We show an example of these checks for Λ+

c → pK−π+ with the
proton mass hypothesis changed to a kaon in Figure 4.18. No sharply peaking structures at
either the D+ or D+

s mass are found in any of the Λ+
c → phh′ data. We take this as evidence

that our final datasets correspond to only candidates which are genuine Λc signal and
candidates which are formed from unrelated tracks, and that reflection misreconstructions
of D decays are sufficiently suppressed in our selections.
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Figure 4.18: The candidate mass distribution of prompt Λ+
c → pK−π+ data after final selection,

where the p mass hypothesis is changed to that of the K+. Shown in (a) is the whole mass
distribution, with the D+ mass region denoted in green with a zoom of this region in (b) and the
D+
s mass region denoted in blue with a zoom of this region in (c). This probes for the presence

of reflections from mis-identified D+/D+
s → K+K−π+.
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4.4.4 Summary

The likely peaking backgrounds from misidentified D+→ hhh/D+
s → hhh and Λ+

c → phh′

decays have been investigated. We do not also explicitly investigate the case of par-
tially reconstructed D+→ hhhh0/D+

s → hhhh0- the missing neutral particle’s momentum
will result in mass distributions which are lower compared to those resulting from mis-
identification of fully reconstructed chargedD decays. The variation in the missing neutral’s
momentum will also result in a higher smearing of the mass distributions. The branching
fractions of four-body D decays are generally significantly lower than their three-body
counterparts, leading to further suppression of possible candidates resulting from this mis-
reconstruction. These factors indicate that any cross-feed from D+→ hhhh0/D+

s → hhhh0

decays will be less significant than in the case of D+→ hhh/D+
s → hhh decays.

Our investigations using simulated data of the mass shapes indicate that distributions
of any prominent reflections should be approximately linear across the Λc signal region.
Our estimations using simulation of reflection yields passing the prompt selection place
estimates on the number of D+ reflections passing the selection. These numbers are of
the order 103, although the errors on these estimates are of order 35 %. We are only able
to place conservative upper limits on D+

s reflections using simulation of 105. As such we
investigate the mass shapes of our real data with candidate mass hypotheses reassigned.
We find no evidence of D reflection backgrounds contaminating our final data sets.

We do not explicitly investigate the corresponding cases of misidentified D0→ hhhh

decays where one charged daughter is not reconstructed. The features of the prompt
selection which make it so robust against charged D reflections also make it robust against
partial reconstruction of neutral D mesons. The only difference between the two is that the
reconstructed charged daughter kinematics will be lower in the case of neutral D decays
due to the missing charged daughter’s missing momentum. Our selection should therefore
have a lower efficiency in the selection of these candidates compared to the investigated
charged D decays due to the minimum daughter momentum requirements. While the
measured cross section for D0 is higher than that of D+ or D+

s , we still estimate that the
number of reflection candidates from these sources is negligible.

We investigate cross-feed between the Λ+
c → phh′ modes. In single mis-ID cases we

expect this to be negligible due to the shifting of the reconstructed candidate mass outside
the signal mass window. In the case of Λ+

c → pK−π+ contamination of the Λ+
c → pπ−K+

mode, we conclude that it is impossible for such contamination to mimic a narrow peak
characteristic of the Λ+

c → phh′ decays.
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4.5 Semileptonic backgrounds

Herein we discuss the potential backgrounds in the main semileptonic TOS analysis.

4.5.1 Mis-ID in Λc decays

As in the case of the prompt analysis, we investigate cross-feed between the Λ+
c → phh′

decay modes.

Single mis-ID

The case of a single daughter mis-identification, as in the prompt analysis, results in mass
distributions outside of the signal region. These cases are shown in Figure 4.19, where no
PID or trigger requirements are placed on the samples. As the mass distributions all peak
outwith the range of interest we conclude that such cross feed between the Λ+

c → phh′

modes is not a concern.

Double mis-ID

As in the prompt analysis, we investigate the case of double mis-ID in the Cabibbo favoured
mode, where both daughter mesons are incorrectly identified. Again, no candidates survive
the full stripping selection. The full mass distribution of these candidates and a close-up
of the Λc mass window in the stripping selection is shown in Figure 4.20, where no PID
or trigger requirements have been placed on the reconstructed candidates. As in the
prompt analysis, we conclude that this Cabibbo favoured to doubly-Cabibbo suppressed
mis-identification cannot mimic the narrow peaks typical of Λ+

c → phh′ decays.

4.5.2 Reassigning mass hypotheses in data

As a more direct check we reassign the mass hypotheses of the daughter particles on the
semileptonic Λ+

c → phh′ data to check for sharply peaking structures, which would be
indicative of D reflections surviving the selection. No structures are observed. We show
an example of these checks for Λ+

c → pK−π+ with the proton mass hypothesis changed to
a kaon in Figure 4.21.
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Figure 4.19: The mass distributions of simulated Λ0
b→ Λ+

c µ
−νµ, Λ+

c → phh′, with the wrong mass
hypothesis forced on one of the daughter mesons. The mass region indicated in red is that applied
in the Λ0

b→ Λ+
c µ
−νµ, Λ+

c → phh′ stripping. The selection applied is a version of the stripping
with all PID cuts removed, and no trigger cuts have been applied.

4.5.3 Summary

It was considered unnecessary to investigate in simulation the case whereby a
B0→ D+µ−νµ,D+→ hhh decay is mis-reconstructed as the charge conjugate of a
Λ0
b→ Λ+

c µ
−νµ,Λ+

c → phh′ decay. The shape of the candidate mass spectra resulting from
such a mis-ID should be similar to the equivalent reflections in the prompt analysis. Despite
the higher TOS trigger efficiencies of D mesons and the lower PID cuts no evidence of
reflections from B0→ D+µ−νµ,D+→ hhh decays was found in checks with the real data.
As such we assume that our selection suppresses reflections from other charm decays such
that they are negligible. Upon unblinding the DCS mode we will investigate the mass
distributions of double mis-ID candidates to check for contamination.

The conclusions we make regarding the SL backgrounds are broadly similar to those
we state for the prompt in Section 4.4.4. We conclude that we have through examination
of simulated and real data shown that our selections sufficiently suppress the backgrounds
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Figure 4.20: The mass distributions of simulated Λ0
b→ Λ+

c µ
−νµ,Λ+

c → pK−π+, with the wrong
mass hypothesis forced on both of the daughter mesons. The mass region indicated in red in
(a) is that applied in the Λ0

b→ Λ+
c µ
−νµ,Λ+

c → phh′ stripping, (b) shows just this region. The
selection applied is a version of the stripping with all PID cuts removed, and no trigger cuts have
been applied.

under consideration to a level whereby they may be considered negligible in the semileptonic
analysis.

131



]2) [MeV/cπCandidate mass M(K K 
1400 1600 1800 2000 2200 2400

2
E

n
tr

ie
s
 p

e
r 

8
.3

0
 M

e
V

/c

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

SL_Lc2pKpi, proton as K, h1 as K, h2 as pi
MisID Mass 1 Full_Selection

Entries  343949
Mean     1943
RMS       102

SL_Lc2pKpi, proton as K, h1 as K, h2 as pi

(a)

]2) [MeV/cπCandidate mass M(K K 
1780 1800 1820 1840 1860 1880 1900 1920 1940

2
E

n
tr

ie
s
 p

e
r 

1
.8

0
 M

e
V

/c

500

1000

1500

2000

2500

SL_Lc2pKpi, proton as K, h1 as K, h2 as pi
MisID Mass 2 Full_Selection

Entries  140522
Mean     1895
RMS     47.16

SL_Lc2pKpi, proton as K, h1 as K, h2 as pi

(b)

]2) [MeV/cπCandidate mass M(K K 
1880 1900 1920 1940 1960 1980 2000 2020 2040

2
E

n
tr

ie
s
 p

e
r 

1
.8

0
 M

e
V

/c

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

SL_Lc2pKpi, proton as K, h1 as K, h2 as pi
MisID Mass 3 Full_Selection

Entries  245951
Mean     1975
RMS     47.65

SL_Lc2pKpi, proton as K, h1 as K, h2 as pi

(c)

Figure 4.21: The mass distribution of SL Λ+
c → pK−π+ data after final selection, where the p

has been mis-identified as a K+. Shown top is the whole mass distribution, with the D+ mass
region denoted in green (bottom left plot) and the D+

s mass region denoted in blue (bottom right
plot). This probes for the presence of reflections from mis-identified D+/D+

s → K+K−π+.
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Chapter 5

Λ+c → phh′ selection efficiencies and
yield extractions

5.1 Efficiencies and efficiency corrections

5.1.1 Overview

The correct determination of efficiencies for each stage of the selection is vital to the
analysis. Starting from the Λc production, we define the selection and associated efficiencies
as follows:

εacc|gen = Nacc
Ngen

This is the fraction of candidates which decay with all daughters produced inside
the detector acceptance.

εreco|acc = Nreco
Nacc

The fraction of candidates generated within the detector acceptance which are fully
reconstructible.

εtrig|reco =
Ntrig
Nreco

The fraction of reconstructible candidates which pass the trigger requirements.

εstrip|trig =
Nstrip
Ntrig

The fraction of triggered candidates which are then stripped, pass the DTF conver-
gence requirement and also pass our kinematic vetoes required for the PIDCalib

calibration, excluding any PID selection in the stripping selection.
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εPID|strip = NPID
Nstrip

The fraction of events passing the full PID selection with respect to the number
passing the rest of the stripping selection.

εBDT |PID = NBDT
NPID

The fraction of events passing the BDT selection with respect to the number passing
the full PID selection.

We now make a number of assumptions to simplify this chain. The first is that the
trigger selection in the prompt analysis is independent of the stripping selection - a strong
assumption given the TIS trigger selection. We also assume the trigger selection in the
SL analysis is also independent of the stripping selection, which is a weaker assumption
and so is explicitly verified. This is a necessary assumption as when the TOS trigger
requirements are applied on the SL simulation very few events survive, and the stripping
efficiency calculations become very statistically limited.

These assumptions let us remove the intermediary trigger step from the acceptance,
reconstruction and stripping steps and we may now consider the following efficiency factor:

εstrip|acc =
Nstrip
Nacc

This is the fraction of Λc candidates decaying with all daughters in the detector
accceptance which are reconstructed and stripped.

Now the final expression for the per-mode adjusted yield becomes:

M =
N

εtrig|reco × εacc|gen × εstrip|acc × εPID|strip × εBDT|PID
(5.1)

where the terms are:

N - The extracted raw yield for the mode.

εtrig|reco - The per-mode trigger efficiency with respect to the reconstruction. In the prompt
analysis we use a TIS chain, so the ratio of these efficiencies is expected to be 1. In
the SL analysis the efficiencies are instead evaluated with simulated data. This is
described in Section 5.1.3.

εacc|gen - The per-mode acceptance of the detector geometry. This is calculated in both
analyses using generator-level simulation, as described in Section 5.1.4.
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εstrip|acc - The per-mode stripping efficiency with respect to the candidates falling in the
detector acceptance. This efficiency must be calculated from simulation. The PID
cuts in the stripping are removed from the selection of simulated candidates, and
the PID cut efficiency correction is treated in a separate data-driven efficiency. The
no-PID stripping efficiency calculation is detailed in Section 5.1.5.

εPID|strip - The per-mode PID selection efficiency with respect to the stripped candidates.
This is calculated using a novel, entirely data-driven variation of the PIDCalib

method, and described in Section 5.1.6.

εBDT|PID - The per-mode BDT efficiency w.r.t. the rest of the selection. The BDT selection
is only applied in the selection of prompt Λ+

c → pπ−K+ events, so is equal to 1 for
all branching fraction ratios not involving the DCS mode. Its efficiency is extracted
by fitting the signal yields of the Cabibbo-favoured distribution before and after the
application of the BDT. Cross checks are performed to verify that the efficiency of
the BDT selection will be uniform in the Λ+

c → pK−π+ and Λ+
c → pπ−K+. This is

described in Section 5.1.7.

The full selection efficiencies for each analysis on a per-mode basis are then given in
Section 5.1.8.

5.1.2 MC efficiencies and resonance modelling

It is necessary to take efficiency corrections for several of the described stages from
simulated data. Poor modelling of any variable used in the selection has the potential
to bias the calculated efficiency for any given stage of the selection. The simulated data
used in the prompt analysis is generated with a phase-space distribution and ignores the
complex resonant structure of Λ+

c → phh′ decays, while the semileptonic simulated data
uses a pseudo-resonance model which attempts to account for the dominant resonant
contributions (as was more fully outlined in Section 4.2.2).

As described previously within this document in Section 3.5.8, three-body baryonic
decays to hadrons can be parameterised by five variables, shown in Figure 5.1. These
variables are:

M(ph1) and M(h1h2) - The invariant mass of the proton and opposite sign meson, and
the invariant mass of the meson pair. Decays through intermediate resonances (such
as K∗,Λ(1520), φ, f 0(980) etc.) will result in local enhancements in these quantities
not present in a phase-space generated distribution.
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cos θp - In the Λc rest frame, the angle between the proton momentum vector and the
polarisation axis of the Λc.

cosφp - In the Λc rest frame, the angle between the component of proton momentum
perpendicular to the Λc polarisation and the direction of the lab frame Λc momentum
vector.

φh1h2 - In the Λc rest frame, the angle between the plane containing the proton momentum
vector and the Λc polarisation vector, and the plane containing the two meson
momentum vectors.

Figure 5.1: The angular variables characterising the Λc resonance structure. From [86].

The simulation used in this analysis does not properly account for the resonance
structures in Λc decays. The data and MC distributions of the above variables are
therefore expected to disagree to varying extents which are difficult to estimate given
the poorly understood nature of Λ+

c → phh′ decays. The data and MC populations of
promptly selected Λ+

c → pK−π+ in bins of the invariant mass resonant variables are shown
in Figure 5.2 to illustrate such disagreements. It is therefore necessary to investigate each
stage of the selection whereby the efficiency is taken from simulation for the following:

• Variations in acceptance across each of the five resonant quantities.

• Disagreements in the data/MC distributions in each of the five resonant quantities.

If both of these criteria are true for any variable at any given stage of the selection,
phase-space averaged efficiencies from simulation may not be naively utilised for that stage
of the selection.
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Figure 5.2: Comparison of the invariant mass of the systems of charge-opposite daughter pairs in
promptly selected Λ+

c → pK−π+ decays, in stripped data (a) and stripped simulation (b).

We also note that in both the prompt and semileptonic analyses, for the Cabibbo
favoured and doubly-Cabibbo suppressed modes the only differences in selection efficiency
will arise from different kinematics due to the different resonances which are possible in
the decays. We therefore exploit that the ratios of their selection efficiencies for a given
stage of selection should be unity if the acceptance of the selection is flat with respect to
the phase-space characterising the resonant struture of the Λc decay.
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5.1.3 Trigger efficiencies

This efficiency is defined as the fraction of reconstructed candidates which pass the trigger
selection. The requirement that the Λc decay is independent of the event triggering in the
selection of prompt candidates is expected to result in efficiency ratios between modes
which are not very different from one. These efficiencies are evaluated using simulated data,
however due to the low TIS efficiency of the MC this calculation is imprecise. An algorithm
is run over the simulation which uses the truth information to record all reconstructible
Λc decays. The fraction of these candidates that pass the trigger selection is equivalent to
the trigger efficiency, and was investigated in each decay mode.

In the semileptonic selection a trigger requirement is utilised such that the Λ0
b decay

itself must trigger the event. While at L0 and Hlt1 the µ in the Λ0
b decay must be TOS, at

Hlt2 the full decay has a TOS requirement. As such, the differing Λc daughter kinematics
will result in different Hlt2 efficiencies. These are calculated using simulated data via the
same procedure utilised in the prompt trigger checks.

Acceptance variations in resonant quantities

The trigger efficiencies are calculated with simulated data. Given the complexity of
the trigger selection algorithms it was considered possible that the SL candidate trigger
acceptance may vary with respect to the poorly modelled resonant quantities. This was
investigated by evaluating the trigger efficiencies in bins of the resonant variables. The
resonant quantities proved to be broadly uncorrelated with the trigger efficiency for all
decay modes. Some example acceptances are given in Figure 5.3 in the invariant mass
systems mpK and mKK in semileptonically produced Λ+

c → pK−K+. As such, we take the
ratio of efficiencies for the doubly-Cabibbo suppressed and Cabibbo-favoured modes to be
unity.

Average full trigger efficiencies

The final results are taken with an average of the simulated efficiencies from the different
magnet polarities weighted with the luminosities of the real data magnet polarities, with
equal weighting given to Λ+

c and Λ−c . The final average trigger efficiencies are given in
Table 5.1. The subscript “Reco” refers to the condition of being reconstructible, while
“Trig” refers to the subset of these passing the trigger selection.

We emphasise that in the prompt analysis, these are not used in the final calculations
of the relative branching fractions and only serve as a cross check that the TIS efficiencies
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Figure 5.3: The trigger acceptance in semileptonically produced Λ+
c → pK−K+ with respect to

resonant variables, demonstrating that the acceptance is broadly uncorrelated with the invariant
masses mpK (a) and mKK (b).

of the different modes are uniform. We also emphasise that the ratio of efficiencies is
demonstrated to be unity in the measurement of B(Λ+

c → pπ−K+)/B(Λ+
c → pK−π+). The

errors provided are the statistical uncertainty arising from limited MC statistics.

Analysis Mode εTrig|Reco [%]

Prompt

Λ+
c → pK−π+ 0.47± 0.01

Λ+
c → pK−K+ 0.47± 0.01

Λ+
c → pπ−π+ 0.44± 0.01

Λ+
c → pπ−K+ 0.46± 0.01

SL
Λ+
c → pK−π+ 14.21± 0.03

Λ+
c → pK−K+ 12.61± 0.07

Λ+
c → pπ−π+ 14.67± 0.08

Table 5.1: The final per-mode phase-space averaged trigger efficiencies for the full trigger selection.

5.1.4 Generator level efficiencies

The simulation utilised in the analyses employ one of two generator-level cuts. These are:

DaughtersInLHCb - This requires all charged daughters in the generated decay to be
produced in the range 0.01 rad < θcharged < 0.4 rad of the z-axis and all neutral
daughters to be produced in the range 0.005 rad < θneutral < 0.4 rad of the z-axis.

LHCbAcceptance - This requires the head particle/mother of the specified signal decay to
be produced in the range 0 < θsignal < 0.4 rad of the z-axis.
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All generated MC samples utilise the DaughtersInLHCb cut, with the exception of the
semileptonic CF Λ+

c → pK−π+ which utilises the LHCbAcceptance cut. Because of the
differing daughter kinematics in the Λ+

c → phh′ modes it is natural to expect that the
DaughtersInLHCb efficiency will not cancel out when a ratio of efficiencies is taken. As
such, an efficiency correction must be applied.

Acceptance variations in resonant quantities

The generator level efficiencies have a weak dependence on the daughter kinematics.
Therefore at this stage of the selection there exists potential for the existance of acceptance
variations with respect to resonant quantities. This was investigated with the use of a
generator-level simulation with no acceptance cuts employed. 100k events were generated
for each permutation of mode and polarity. By examining the decay kinematics it is
determined for each simulated decay whether or not the two generator level requirements
are met.

Histograms were then constructed by binning the samples in bins of the resonant
variables and counting the candidates in each bin passing the cuts to construct efficiencies.
We fit a first order polynomial with a gradient fixed at zero to the distribution to check for
acceptance flatness. In these checks the fits to the distributions yielded acceptable p-values
and reduced χ2 values. As such it was concluded that there was no significant variation in
acceptance at this stage of the selection, and that phase-space averaged efficiencies were
appropriate. Example tests for the promptly produced Λ+

c → pπ−π+ magnet-up efficiency
distributions are shown in Figure 5.4. As such, we take the ratio of efficiencies for the
doubly-Cabibbo suppressed and Cabibbo-favoured modes to be unity in the prompt and
semileptonic analyses.

Calculated efficiencies

Given that the generator-level acceptances do not appear correlated to the resonant
variables, we can confidently use phase-space averaged efficiencies. In the semileptonic
analysis the logs of the simulation production are used to record the generator requirement
efficiencies, which are compared against the less precise checks calculated with the smaller
samples generated with no generator requirements. In the prompt analysis the simulation
has a significant non-prompt component which we remove from the samples after production.
Therefore in the final results we use our smaller generator-level only samples where the
Λc ancestry is verified as prompt. We calculate efficiencies by magnet polarity and by Λc
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Figure 5.4: Generator cut acceptance in semileptonically produced Λ+
c → pπ−π+ with respect to

θhh (a) and cosφp (b).

charge. The prompt efficiencies are given in Table 5.2, and the semileptonic efficiencies
given in Table 5.3, for both the logfile efficiencies from the sample generation and from
our own generator-level samples. While we provide both, the latter are used in the final
results for the prompt and the former for the semileptonic.

We note that as the generator level acceptances are flat across the space characterising
the resonant decay, the selection efficiencies cancel between the Cabibbo-favoured and the
doubly-Cabibbo suppressed. We therefore take the relative efficiencies as unity for the
measurements of B(Λ+

c → pπ−K+)/B(Λ+
c → pK−π+).

We also note that in the prompt there is a clear trend for the generator-level efficiency of
Λ−c to be 3 – 5 % higher depending on the decay mode than the corresponding Λ+

c . This is
attributable to the differing hadronisation of Λ+

c and Λ−c given the proton – proton collision
and underlying event. The majority of prompt Λc production comes from cc production,
which in turn predominately comes from gg interactions. As such, independently of the
underlying event we would expect symmetric hadronisation of Λ+

c and Λ−c . However, the
c quark can hadronise with the highly boosted proton remnants in the underlying event
to form a boosted Λ+

c , while the c quark cannot form a Λ−c similarly. This results in a
higher proportion of Λ+

c being produced at high η and being lost in the beampipe, outwith
the generator level acceptance. This is demonstrated in Figure 5.5 for the MagDown
prompt Λ+

c → pK−π+ generator-level sample. The excess in Λ+
c in the high η region (at

around η = 9) demonstrates this effect, and it is fully expected given the LHC’s production
environment.

We provide in Table 5.4 the average efficiencies on a per-mode basis used in the final
results. These are taken from an average of the simulated efficiencies from the different
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Polarity Part/Antipart Decay mode Logfile Eff True Prompt Eff

MagUp

Particle

Λ+
c → pK−π+ 0.208± 0.001 0.211 ± 0.002

Λ+
c → pK−K+ 0.234± 0.001 0.237 ± 0.002
Λ+
c → pπ−π+ 0.194± 0.001 0.199 ± 0.003

Λ+
c → pπ−K+ 0.211± 0.001 0.213± 0.002

Antiparticle

Λ−
c → pK+π− 0.219± 0.001 0.218 ± 0.002
Λ−
c → pπ+π− 0.242± 0.001 0.244 ± 0.002

Λ−
c → pK+K− 0.200± 0.001 0.201 ± 0.004
Λ−
c → pπ+K− 0.217± 0.001 0.218± 0.003

MagDown

Particle

Λ+
c → pK−π+ 0.210± 0.001 0.210 ± 0.002

Λ+
c → pK−K+ 0.234± 0.001 0.235 ± 0.002
Λ+
c → pπ−π+ 0.193± 0.001 0.195 ± 0.002

Λ+
c → pπ−K+ 0.211± 0.001 0.210 ± 0.002

Antiparticle

Λ−
c → pK+π− 0.214± 0.001 0.220 ± 0.002
Λ−
c → pπ+π− 0.243± 0.001 0.242 ± 0.002

Λ−
c → pK+K− 0.199± 0.001 0.203 ± 0.002
Λ−
c → pπ+K− 0.217± 0.001 0.217 ± 0.002

Table 5.2: The prompt generator-level efficiencies both from the logfiles of the simulation produc-
tion and a small sample of generator-level MC where the Λc is verified as being produced promptly.
All efficiencies correspond to the DaughtersInLHCb requirement. The latter efficiencies correspond
to only those candidates which are prompt, the former includes secondary contamination and is
not used but provided for comparison.

magnet polarities weighted with the luminosities of the real data magnet polarities, with

Polarity Part/Antipart Decay mode Logfile Eff Calculated Eff

MagUp

Particle
Λ0
b→ Λ+

c µ
−νµ, Λ−

c → pK+π− 0.334± 0.001 0.339± 0.002
Λ0
b→ Λ+

c µ
−νµ, Λ−

c → pK+K− 0.182± 0.001 0.182± 0.002
Λ0
b→ Λ+

c µ
−νµ, Λ−

c → pπ+π− 0.157± 0.001 0.158± 0.002

Antiparticle
Λ0
b→ Λ−

c µ
+νµ, Λ−

c → pK+π− 0.332± 0.001 0.331± 0.002
Λ0
b→ Λ−

c µ
+νµ, Λ−

c → pK+K− 0.181± 0.001 0.182± 0.002
Λ0
b→ Λ−

c µ
+νµ, Λ−

c → pπ+π− 0.158± 0.001 0.159± 0.002

MagDown

Particle
Λ0
b→ Λ+

c µ
−νµ, Λ−

c → pK+π− 0.334± 0.001 0.337± 0.002
Λ0
b→ Λ+

c µ
−νµ, Λ−

c → pK+K− 0.183± 0.001 0.181± 0.002
Λ0
b→ Λ+

c µ
−νµ, Λ−

c → pπ+π− 0.157± 0.001 0.158± 0.002

Antiparticle
Λ0
b→ Λ−

c µ
+νµ, Λ−

c → pK+π− 0.333± 0.001 0.330± 0.002
Λ0
b→ Λ−

c µ
+νµ, Λ−

c → pK+K− 0.181± 0.001 0.182± 0.002
Λ0
b→ Λ−

c µ
+νµ, Λ−

c → pπ+π− 0.156± 0.001 0.154± 0.002

Table 5.3: The semileptonic generator-level efficiencies both from the logfiles of the simula-
tion production and a sample of generator-level MC. The logfile efficiencies are valid in
this case and use higher statistics in their calculations so are used, the “Calculated Eff”
serves merely as a cross check. All Λ+

c → pK−π+ modes use the LHCbAcceptance cut, all
other modes use the DaughtersInLHCb cut. Some cross check efficiencies are missing due
to processing errors.
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Figure 5.5: The η distributions of generator-level Λ+
c (black) and Λ−c (red). Distributions are

taken from the generator-level samples of Λ+
c → pK−π+ data. Shown is the excess in high η Λ+

c

corresponding to c quarks which have hadronised with the proton remnants and fall outside the
detector acceptance.

equal weighting given to Λ+
c and Λ−c .

Stream Mode εAcc|Gen [%]

Prompt

Λ+
c → pK−π+ 21.27± 0.05

Λ+
c → pK−K+ 23.84± 0.05

Λ+
c → pπ−π+ 19.66± 0.05

Λ+
c → pπ−K+ 21.35± 0.05

Semileptonic
Λ+
c → pK−π+ 33.31± 0.07

Λ+
c → pK−K+ 18.15± 0.04

Λ+
c → pπ−π+ 15.66± 0.04

Table 5.4: The average per-mode generator level efficiencies used in the final analysis. The
subscript “Gen” refers to the condition of being generated, “Acc” refers to the condition of passing
the generator level cut for that mode.
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5.1.5 Stripping efficiencies

Overview

The stripping selections in prompt and semileptonic, as outlined in Section 4.3.1, use a
suite of kinematic cuts and PID information to reduce the combinatoric background. The
stripping efficiency may be factorised into the efficiency of the PID cuts and the efficiency
of the rest of the stripping selection. This is useful as the PID response is not well modelled
in the LHCb simulation, and is better evaluated with the use of data-driven techniques.

The efficiency of the remainder of the stripping selection may be evaluated with
simulated data. Further kinematic cuts on the daughter particles in the decay - specifically
track p and η - are necessary for PID calibration (this was elaborated in Section 4.3.3,
and the full suite of kinematic cuts was previously given in Table 4.4). As the real data
candidates with daughters falling in the kinematically vetoed region do not have valid
PID efficiencies, we cannot derive an efficiency correction in a data-driven way. Instead
the efficiency of these cuts must be evaluated with simulated data. For convenience the
evaluation of the efficiency of these kinematic cuts is performed in tandem with the no-PID
stripping efficiency.

We factorise out the PID cuts by running a version of the stripping selection algorithm
which has had all PID cuts removed on the simulated data. We also apply the kinematic
vetoes and DTF convergence requirement on this dataset. The fraction of generated,
truth-matched candidates which pass the no-PID stripping, DTF convergence requirement
and kinematic vetoes is defined as the stripping efficiency. We repeat the point that the
stripping efficiency in this analysis is defined as the efficiency of the no-PID stripping,
DTF convergence requirement and kinematic vetoes together - we do not treat the latter
separately as an “offline” efficiency as these cuts are necessary for the PID selection
efficiency correction to be valid.

The selections used in both prompt and semileptonic samples sculpt the distributions
of signal kinematics. The effect this has on the stripping acceptance with respect to the
resonant variables was investigated. Strong local variation in acceptance was observed in
a number of variables, especially in bins of invariant masses of the daughter pairs. Such
variation is displayed in Figure 5.6 for the invariant mass variables in prompt Λ+

c → pK−π+.
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Figure 5.6: Stripping efficiency in bins of the invariant mass variables for semileptonically selected
Λ+
c → pK−π+. Unlike the checks for acceptance bias at the generator and trigger levels of the

selection, strong variation is observed at the stripping level.

Local efficiencies and re-weighting procedure

The stripping efficiency bias with respect to the resonant variables necessitates a re-
weighting of the simulation and of the efficiency for the stripping selection. This is
achieved by dividing the simulation in multidimensional bins of the resonant variables. We
count the generated candidates in each bin and the truth-matched candidates surviving
the no-PID stripping selection and kinematic veto selection to acquire local efficiencies in
the 5D space. We then use these local efficiencies to assign per-candidate efficiencies to
the real data, extracting the adjusted yield M by summing over the bins:

M =
∑
j

Nj

εj
(5.2)

where Nj is the number of data candidates in bin j and εj is the efficiency in bin j. The
ratio of the raw number of data candidates passing selection over the adjusted yield gives
the re-weighted efficiency ε̄:

ε̄ =
N

M
(5.3)

In such a procedure the following systematic uncertainties arise:

1. The finite simulation statistics result in a binomial uncertainty on the bin efficiency.
As we further subdivide our sample this uncertainty becomes larger in magnitude.

2. The bins in the schema have a finite width. As we know, the efficiency varies across
the variable space. This means that for each bin in the schema, the average bin
efficiency is dependent on the distributions of the resonant variables within the bin.
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These are different between data and MC and so can result in biases if the binning
is too coarse.

These are clearly opposing trends - to minimise the overall systematic contribution we
must therefore find the optimum choice of binning.

Due to the low efficiency of both the prompt and semileptonic selections, a low
proportion of the generated candidates survive the stripping selection. The number of MC
events which survive the selection are given in Table 5.5. This makes attaining a sufficiently
fine-grained 5D binning problematic, and initial efforts to construct a full 5D binning
schema yielded results with a high disagreement between the prompt and semileptonic
measurements. As such, we use a "reduced dimensionality" method to re-weight the
efficiency within the 5D space only where necessary by discounting variables from the
binning schema where the acceptance is flat or the data-MC agreement is good.

Mode NAcc NStrip|Acc εStrip|Acc [%]
Λ+
c → pK−π+ 2308801 7225 3.131± 0.037× 10−3

Λ+
c → pK−K+ 2230984 5598 2.510± 0.033× 10−3

Λ+
c → pπ−π+ 2305682 7945 3.448± 0.039× 10−3

Λ0
b→ Λ+

c µ
−νµ, Λ+

c → pK−π+ 9585315 110290 1.118± 0.003× 10−2

Λ0
b→ Λ+

c µ
−νµ, Λ+

c → pK−K+ 1017068 26601 2.611± 0.016× 10−2

Λ0
b→ Λ+

c µ
−νµ, Λ+

c → pπ−π+ 990964 23194 2.342± 0.015× 10−2

Table 5.5: The number of MC events generated and the number of MC events passing the no-PID
stripping selection. The subscript “Acc” refers to the condition of passing the generator level cuts,
and the subscript “Strip” refers to the condition of passing the no-PID stripping selection. For
prompt, the number generated corresponds to the number of true prompt decays, excluding those
Λc produced from long-lived particles. The ratio of the stripped to generated candidates cannot
be naively interpreted as an average stripping efficiency due to the poor data/MC agreement
in the resonant structure, but are given here for completeness. We also remind the reader that
the SL Λ+

c → pK−π+ simulation has different generator level cuts and therefore has a markedly
different stripping efficiency with respect to the generator-level accepted candidates.

Propagating bin errors to errors on ε̄

In any binned efficiency schema, each bin efficiency has a binomial uncertainty associated
to it. To propagate this error through to the final re-weighted efficiency, we utilise a toy
approach. In this method, we take a particular binning schema and evaluate efficiencies
and binomial errors for each bin, where as usual the subscript “Acc” refers to the condition
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of passing generator level cuts:

ε =
NStrip

NAcc

σε =

√
ε(1− ε)
NAcc

.

(5.4)

We then generate 1000 toy binning schemas based on the original. For every toy, in
each bin we randomly resample the number of events which pass the selection from a
binomial distribution, using the original number of candidates generated in said bin and
the efficiency of the original bin as the n and p of the binomial distribution respectively. We
then use each binning schema to assign a stripping efficiency to each real data candidate,
and then from the efficiency-corrected yield extract a new stripping efficiency for the mode
using the candidate sWeights:

M =
n∑
i=1

wi
εi

ε̄ = N/M

(5.5)

where wi is the candidate sWeight, εi the candidate stripping efficiency, M the adjusted
yield, N the extracted raw yield and ε̄ the re-weighted average efficiency. In such a fashion,
for each toy an ε̄ is calculated. We then take the standard deviation of the ε̄ distribution
for all toys over the original re-weighted efficiency as a fractional systematic uncertainty
on the efficiency.

The κ binning statistic

There is no standard way to find the optimum bin granularity given a specific simulated
dataset. The efficiency within a given bin should be as close to uniform as possible.
If there is significant variation in efficiency across a kinematic bin then differences in
kinematics between the data and simulation can result in the average efficiency in the bin
being markedly different in data and simulation. However, binning too finely inflates the
statistical error and eventually can cause biases.

It is difficult to visualise an efficiency space in more than 2 dimensions - as such the
candidate developed a method of parameterising the efficiency variation between adjacent
bins relative to the statistical uncertainty on the adjacent bin efficiencies. This weighted
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difference in efficiency between bin a and bin b, κab, may be expressed as:

κab =
|εa − εb|√
σ2
a + σ2

b

. (5.6)

We consult the mean κ over multidimensional binning schemas. If this mean value is too
large, the schema is too coarse given the simulation statistics available, and the variation
of bin efficiency relative to the binomial error is too large. If the mean is too small, the
schema is too fine given the statistics available, and the statistical uncertainty on the bin
efficiencies is too high relative to the efficiency variation. We use the mean κ value of the
bin schemas to determine which schemas provide the best description of the efficiency
space - those binnings with a mean κ close to one are determined to be suitable. A full
description of this test statistic and a justification of the optimum mean κ is given in
Appendix A, which can be read as a standalone chapter.

Efficiency biases in re-weighting

A bias in the stripping efficiency re-weighting due to finite simulation statistics was also
identified when using our expression for the adjusted yield. This bias results in the
re-weighted efficiencies being biased downward, and is proportional to the ratio of the
statistical uncertainty on the bin efficiencies divided by the bin efficiencies. For a set
number of simulated events, this bias therefore becomes worse as the number of bins
increases. Investigations with toy simulation determined the magnitude of this bias for
each stripping efficiency. This allows an upper limit on the number of bins in a schema
to be derived, which is defined as the number of bins where the magnitude of the bias is
larger than the binomial uncertainty on the integrated simulation sample. The statistical
motivation for this bias and the full results of our toy studies are presented in Appendix B,
which can also be read as a standalone chapter.

Recipe for reduced dimensionality efficiencies

We describe the steps to obtain the final stripping selection efficiency and the associated
systematics for each mode as follows:

1. We consult the data/MC distributions for each resonant variable. If there is good
agreement, we discount the variable from the re-weighting schema.
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2. We consult the stripping acceptance with respect to each resonant variable. If the
acceptance is flat, we discount the variable from the re-weighting schema.

3. From steps 1 and 2 we arrive at a list of resonant variables for which we must
re-weight.

4. At this stage we begin to construct local efficiencies using a variety of uniformly
binned schemas, with different numbers of bins in each variable. We bin the simulated
sample in the required variables and, by counting the numbers of generated and
stripped candidates in each bin, assign an efficiency and binomial error on said
efficiency to each bin in the schema. We construct binnings with 5 – 15 bins in each
variable.

5. We then perform the following for each schema:

(a) Ensure that the binning granularity is low enough, and the binomial errors on
the bin efficiencies low enough, that the bias identified in Section 5.1.5 is not
statistically significant. If it is, we discount the schema from those considered
suitable.

(b) Calculate the mean κ value for the schema. We make the ansatz that binnings
with mean κ above 1.5 should be discounted because the efficiency variation
across the individual bins in the schema are too high. We also discount binnings
with mean κ below 0.9 because the statistical fluctuations in the individual bin
efficiencies begin to dominate over the genuine efficiency structure.

(c) For each of the surviving schemas which satisfy the above stability criteria, we
re-weight the real data using the efficiency bin schema to assign per-candidate
efficiencies to the data. We then use these to extract average re-weighted
per-mode efficiencies.

(d) We use the toy method outlined in Section 5.1.5 to propagate the statistical
uncertainty from finite simulation statistics on the individual bins (and therefore
the per-candidate efficiencies) to the final re-weighted average efficiency.

6. At this point we have arrived at a set of efficiency binning schemas for the mode
which satisfy the stability criteria with different binning granularities. We have used
each of these schemas to assign a set of per-candidate efficiencies to the real data,
and used each of these to evaluate average re-weighted efficiencies for the mode.
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Each of these efficiencies has a statistical uncertainty ascribed to it due to limited
MC statistics.

7. In steps 1 and 2 we have discounted variables from the schema based on data/MC
compatibility or acceptance flatness. These checks are, however, 1D checks while
integrating over all other resonant variables, and are insensitive to local variations
with respect to the excluded variable in the multidimensional space which average
out when the integration occurs. As a cross check:

(a) If a variable has been discounted from the schema, we construct new binning
schemas using the variables which have not been discounted with an arbitrary
number of bins in the discounted variable under investigation. We then repeat
the re-weighting procedure with this new schema to acquire an average re-
weighted efficiency and associated statistical error.

(b) We then compare this new efficiency with an efficiency determined from a
binning schema and re-weighting without the discounted variable.

(c) If the average re-weighted efficiencies are consistent within error, we take
this as evidence that the discounting of the variable from the schema is well
motivated. If they are not in agreement, then we take this as evidence that there
is some local structure with respect to the discounted variable, and that the
discounting of the variable from the schema is not valid. As such, we re-include
the discounted variable into the schema.

8. Now we have a final list of re-weighted efficiencies which are derived only from those
schemas satisfying the stability criteria. Each of these will have different granularities.
Therefore each will be subject to slightly different statistical fluctuations in each
bin, but this is largely taken into account by the toy method to evaluate statistical
uncertainties.

9. The foremost reason for considering an ensemble of efficiencies from valid binning
schemas stems from the consideration of the systematic uncertainty which arises
due to the finite bin size; this finite size means that the efficiency in each bin is not
single valued. Between schemas in our ensemble of binnings, the bin boundaries have
different locations. This gives us some sensitivity to the variation of efficiency across
individual bins in the schemas, and its contribution to the systematic uncertainty on
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the re-weighted efficiency, when we consider the variation in the extracted re-weighted
efficienies in the ensemble.

10. We therefore take the median value of the ensemble of re-weighted efficiencies as the
final re-weighted efficiency, with the highest and lowest efficiencies forming upper
and lower bounds on the systematic uncertainty due to binning effects. We take
the maximum statistical uncertainty of the efficiencies as the systematic uncertainty
from finite simulation statistics.

This allows the derivation of efficiencies which are re-weighted to take account of the
resonant structures in data, in such a way which allows us to estimate and minimise
systematic uncertainties from limited statistics and the limitations of the binning schema.

We note that for the efficiency correction for the Λ+
c → pπ−K+ mode in the semileptonic,

we use the simulation of Λ+
c → pK−π+ to derive local efficiencies in the resonant space.

Various resonances are modelled in the Cabibbo favoured simulation. We therefore bin
finely in the invariant mass resonant variables, such that the efficiency in each bin should
be very close to single-valued. This results in valid bin efficiencies across the phase
space for the doubly-Cabibbo suppressed mode, even with the resonances modelled in the
Cabibbo-favoured simulation.

Final re-weighted efficiencies

We present in Table 5.6 the final re-weighted stripping efficiencies for each analysis on a
per-mode basis. We also present a comparison between the phase-space average efficiencies
and the re-weighted efficiencies for each mode in the two analyses in Table 5.7. The
re-weighting procedure alters most of the stripping efficiencies at statistically significant
levels.

5.1.6 PID efficiencies from a fully data-driven PIDCalib

PIDCalib outline

PID DLL cuts are included in all prompt and semileptonic Λ+
c → phh′ stripping selections,

but the PID response is known to be poorly modelled in the LHCb simulation. This is
caused by the lower detector occupancy in simulated events and the changing operating
conditions in real data (the gas radidator temperature and pressure fluctuates over time)
that are difficult to model. The PIDCalib package is used to assign event-by-event PID
efficiencies to each candidate in a data-driven fashion.
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Stream Mode Final εrw [%] Fractional systematic [%]

Prompt
Λ+
c → pK−π+ (0.289± 0.006± 0.003) % 2.1 / 1.0 / 2.3

Λ+
c → pK−K+ (0.266± 0.008± 0.003) % 3.0 / 1.1 / 3.2

Λ+
c → pπ−π+ (0.334± 0.008± 0.001) % 2.4 / 0.3 / 2.4

SL
Λ+
c → pK−π+ (1.194± 0.004± 0.016) % 0.3 / 1.3 / 1.4

Λ+
c → pK−K+ (2.612± 0.018± 0.038) % 0.7 / 1.5 / 1.6

Λ+
c → pπ−π+ (2.229± 0.025± 0.046) % 1.1 / 2.1 / 2.3

Table 5.6: The final re-weighted efficiencies for each analysis. The first errors on the efficiencies are
those from the propagated binomial uncertainties from limited simulation statistics as evaluated
by our toy method. The second errors on the efficiencies are the additional systematic from the
discounted variables and the finite bin width. The first fractional errors given are those from
limited statistics, the second are those from the finite bin width and discounted resonant variables,
the third are the sum of these in quadrature.

Stream Mode εave [%] εrw [%] Difference (σ)

Prompt
Λ+
c → pK−π+ (0.313± 0.004) % (0.289± 0.007) % 3.0

Λ+
c → pK−K+ (0.251± 0.003) % (0.266± 0.009) % 1.6

Λ+
c → pπ−π+ (0.345± 0.004) % (0.334± 0.008) % 1.2

SL
Λ+
c → pK−π+ (1.118± 0.013) % (1.194± 0.016) % 3.7

Λ+
c → pK−K+ (2.611± 0.016) % (2.612± 0.042) % 0.0

Λ+
c → pπ−π+ (2.342± 0.015) % (2.229± 0.052) % 2.1

Table 5.7: The phase-space averaged per-mode stripping efficiencies and the re-weighted per-mode
efficiencies. The errors on the phase-space averages are from finite simulation statistics, the
errors on the re-weighted values are the full systematics, or the errors from finite simulation and
the binning errors taken in quadrature. Also given are the differences between the phase-space
averaged and re-weighted values in terms of the error in quadrature of the two efficiencies (ignoring
correlations between the statistical uncertainties).

The PID response of a given daughter is dependent on the daughter’s mass, momentum
and η. It is also dependent on the number of particles passing through the RICH in the
complete event. The PIDCalib method assumes that the PID response of a given track
may be characterised by a finite suite of kinematic and event variables. There exist two
commonly used suites of variables within typical LHCb analyses:

• p, pT, and the number of tracks in the event, NTracks.

• p, η and the number of tracks in the event, NTracks.

Both of these suites of variables are assumed to fully characterise the PID DLL response
to a given track.
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The method exploits the use of decay channels, which may be cleanly reconstructed
purely with kinematic constraints, and without PID cuts of any form. Reconstruction
of these modes allows for samples of p, π and K tracks to be acquired which have not
been subjected to any PID cuts. The decay modes corresponding to each type of charged
daughter are:

p : Λ→ pπ−

K/π : D∗(2010)+ → D(K−π+)π+
s

By binning the data from these modes in schemas composed of one of the above sets
of variables, and then applying the PID DLL cuts used in the analysis, it is possible to
acquire local PID efficiencies within the variable space in an entirely data-driven way.
Signal data is assigned an event-by-event PID efficiency based on its position within said
variable space.

Data reference samples

Ususally in PIDCalib, the end-user utilises a simulated signal, or reference, sample which
has had no PID cuts applied to it. This entails passing the sample to PIDCalib, where the
application assigns each simulated candidate’s tracks a PID efficiency from the performance
histograms generated with the calibration data tracks. For decays with multiple daughter
tracks with PID requirements, the candidate PID efficiency is then the product of the
track PID efficiencies - in this way the kinematic correlations between daughter tracks
are accounted for. The per-mode signal PID efficiency is therefore simply the average
candidate PID efficiency, as no PID cuts have been applied to the sample.

In the case of Λc decays, it is known that the daughter kinematics, and especially
the correlations between daughter kinematics due to intermediate resonances, are badly
modelled in the LHCb simulation. In some cases where poor kinematic modelling is known
to be an issue, a solution is to re-weight the simulation kinematics to match the data and
then to use the simulated sample in PIDCalib. The inclusion of PID cuts in all stripping
selections in this analysis precludes this option, as we do not have access to the unbiased
PID distribution before cuts. As such, the proponents have developed an implementation
of PIDCalib where a data-driven reference sample with PID cuts is utilised.

The calibration data is used to assign per-candidate efficiencies in the usual way to
the real data reference sample. Then, to extract a per-mode average PID efficiency we

153



calculate the PID-adjusted yield by weighting the signal candidate sWeights with the
per-candidate PID weights. The expression for the PID-adjusted yield M is

M =
n∑
i=1

wi
εi

(5.7)

where there are n candidates, each with an sWeight wi and a PIDCalib determined
per-candidate efficiency εi. The per-mode PID efficiency is then

ε̄PID =

∑n
i=1 wi
M

. (5.8)

This is simply the raw yield over the PID-adjusted yield, and is functionally identical to
the determination of the re-weighted stripping efficiencies. As such, we can correct for the
PID efficiency of the Λc decay modes without utilising any simulation data.

Binning schema and kinematic vetoes

The choice of binning schema in this analysis is influenced by two factors. Firstly, the
pT distributions of protons from charm decays are much higher than in the calibration
Λ→ pπ− sample. The η distributions, however, have similar coverage. As such, η is
favoured over pT.

A 3D binning will inflate the statistical uncertainty in each bin compared to a 2D
binning. As can be seen in Figure 5.7, the distributions for event nTracks between the
Λ+
c → phh′ decay modes are similar. Discounting nTracks from the binning schema will

result in the derived PID efficiencies becoming biased by a constant factor, which will be
identical between the decay modes in the case of equal distributions of nTracks.

Therefore a 2D binning schema is chosen using p and η, detailed in full in Table 5.8.
PID efficiency histograms with this binning schema are constructed using the calibration
data, and are used to assign event-by-event local PID efficiencies. The histograms of PID
efficiency in bins of track η and track p are shown in Figure 5.8 for the prompt selection
and in Figure 5.9 for the semileptonic selection. The same plots for the semileptonically
selected pions in the SL Λ+

c → pπ−π+, on which different PID cuts are placed compared
to the pions in the other semileptonic modes, are shown in Figure 5.10.
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Figure 5.7: The background subtracted event nTrack distributions in the prompt (a) and
semileptonic (b) selections. The distributions are compatible in all Λ+

c → phh′ decay modes.

Selection Var Bin Schema

All Λ+
c → phh′

p [MeV/c2 ] 5000 : 9300 : 15600 : 19000 : 24166.7 : 29333.3 : 34500 :
39666.7 : 44833.3 : 50000 : 66666.7 : 83333.3 : 100000

η 2 : 2.625 : 3.25 : 3.875 : 4.5

Table 5.8: The binning schemas used in the PID Calibration procedure.

Final PID efficiencies

The average per-mode PID efficiencies are given in Table 5.9. The subscript “PID” refers to
the condition of passing the PID cuts used in the mode, and “Strip” refers to the condition
of passing the no-PID stripping selection (including the DTF convergence criteria and the
kinematic vetoes).

Stream Mode εPID|Strip [%]

Prompt
Λ+
c → pK−π+ 42.74± 0.04

Λ+
c → pK−K+ 38.62± 0.04

Λ+
c → pπ−π+ 45.35± 0.05

SL
Λ+
c → pK−π+ 47.95± 0.05

Λ+
c → pK−K+ 43.34± 0.04

Λ+
c → pπ−π+ 43.21± 0.04

Table 5.9: The per-mode average PID efficiencies.
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Figure 5.8: The prompt PID efficiencies in bins of track η and track p, as obtained from PIDCalib.156
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Figure 5.9: The semileptonic PID efficiencies in bins of track η and track p, as obtained from
PIDCalib.
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Figure 5.10: The semileptonic Λ+
c → pπ−π+ pion PID efficiencies in bins of track η and track p.
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5.1.7 BDT efficiency

A BDT is applied in the offline selection of prompt Λ+
c → pπ−K+ events. It is likely that

upon unblinding the channel that the extraction of a signal yield before the application
of the BDT will be impossible. As the BDT is trained to be agnostic to the daughter
kinematics in the Λc decay, the responses to the BDT of the CF and DCS modes should be
equivalent despite the different intermediate resonances which are expected to occur in the
two modes. We utilise the stripped MC to verify this, with the calculated efficiencies given
in Table 5.10. The efficiencies for the Λ+

c → pK−π+ and Λ+
c → pπ−K+ modes agree within

errors. We investigate in Λ+
c → pK−π+ the distributions of input variables to investigate

the modelling of the BDT input variables. The Cabibbo-favoured is utilised in these checks
for the higher statistics in the mode. We obeserve in all cases good agreement between
data and simulation.

As a final check we verify that the efficiency of the BDT selection is compatible between
the Λ+

c → pK−π+ data and simulation. The large statistics of the sample mean we can
extract the efficiency of the selection on the real Λ+

c → pK−π+ data simply by fitting the
Λc mass before and after the BDT selection. The selection efficiency on the simulated data
is 80.0 ± 0.5, while for the real data the selection efficiency is evaluated to be 79.5± 0.5,
and as such the two are compatible. As such we may confidently take from simulation
the BDT efficiency for the DCS, verified by the identical Cabibbo-favoured response in
simulation, and the matching response of the Cabibbo-favoured data.

Stream Mode NStrip NBDT|Strip εBDT|Strip [%]

Prompt Λ+
c → pK−π+ 6507 5206 80.0± 0.5

Λ+
c → pπ−K+ 7172 5771 80.5± 0.5

Table 5.10: The efficiencies of the BDT selection when applied to the prompt MC.

5.1.8 Full selection efficiencies and summary

The efficiencies of the full selections for each mode are given in Table 5.11. In these
figures the trigger efficiencies in the prompt analysis are included to better illustrate the
efficiencies of the full selections, though the trigger efficiency correction is not included in
the final prompt relative branching fraction results as the efficiencies are demonstrated
to be equal across the prompt modes. These are the final efficiencies used to derive the
adjusted yields in the final branching fraction results.
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Stream Mode εTotal

Prompt
Λ+
c → pK−π+ (1.24± 0.04)× 10−6

Λ+
c → pK−K+ (1.15± 0.04)× 10−6

Λ+
c → pπ−π+ (1.40± 0.04)× 10−6

SL
Λ+
c → pK−π+ (2.71± 0.01)× 10−4

Λ+
c → pK−K+ (2.59± 0.04)× 10−4

Λ+
c → pπ−π+ (2.21± 0.03)× 10−4

Table 5.11: The total selection efficiencies in the analyses. The errors are the statistical errors
from finite signal simulation and PIDCalib calibration data only.
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5.2 Yield extraction

The analysis proedure relies on the extraction of genuine Λ+
c → phh′ candidates from

those candidates formed from combinatorics. We outline the present yield extraction, and
conclude this section by detailing a planned update to the prompt yield extractions to
account for secondary Λ+

c → phh′ backgrounds.

5.2.1 Prompt

The species identified in the prompt sample are as follows:

Prompt Λ+
c → phh′ - decays of Λ+

c → phh′ where the Λc is produced either directly at
the primary interaction or from a decay from a short-lived excited charm hadron.
This is classed as the “signal”. The mass distribution of these candidates is modelled
by a Crystal Ball function [143] and a Gaussian function constrained to a shared
mean in the Cabibbo-favoured mode, and a Gaussian function in all other modes. 1

Secondary Λ+
c → phh′ - decays of Λ+

c → phh′ where the Λc is produced in the decay of
a long-lived b-hadron. This is classed as a background. At present this background
is not properly accounted for in the prompt analysis.

Combinatorics - combinations of unrelated tracks which mimic Λ+
c → phh′ decays. The

mass distribution of these candidates is modelled by a first order polynomial.

We utilise an unbinned extended maximum likelihood fit to the data candidates.
All parameters in the mass models are allowed to float. The fit takes place over -80 –
+45 MeV/c2 of the nominal Λc mass of 2286.46 MeV/c2.

The fit results after the final selection are shown for the semileptonically produced
candidates in Figure 5.11 – Figure 5.13. In all plots, the total combined pdf is indicated
in blue, the combined signal pdf is indicated in green, any individual signal components
are indicated in cyan, and the background component is indicated in red.

1The Crystal Ball function is a Gaussian function with a power law low-end tail. It is of particular use
in parameterising the mass distributions of candidates formed from combinations of tracks from a decaying
particle, whereby unreconstructed final state radiation (FSR) results in a lower computed invariant mass
of the system which manifests in a low end power law tail.
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Figure 5.11: Λc mass fit and pull distribution for the prompt Λ+
c → pK−π+.
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Figure 5.12: Λc mass fit and pull distribution for the prompt Λ+
c → pK−K+.
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Figure 5.13: Λc mass fit and pull distribution for the prompt Λ+
c → pπ−π+.
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5.2.2 Semileptonic

The species identified in the semileptonic sample are as follows:

Λ0
b→ Λ+

c µ
−νµ, Λ+

c → phh′ - decays of Λ+
c → phh′ where the Λc is produced in a semilep-

tonic decay of a Λ0
b . This is classed as the “signal”. The mass distribution of these

candidates is modelled by a Crystal Ball function [143] and Gaussian function con-
strained to a shared mean in the Cabibbo-favoured mode, and a Gaussian function
in all other modes.

Combinatorics - combinations of unrelated tracks which mimic Λ+
c → phh′ decays. The

mass distribution of these candidates is modelled by a first order polynomial.

We utilise an unbinned extended maximum likelihood function in the fit to the data
candidates. All parameters in the mass models are allowed to float. The fit takes place
over -80 – +45 MeV/c2 of the nominal Λc mass of 2286.46 MeV/c2.

The fit results after the final selection are shown for the semileptonically produced
candidates in Figure 5.14 – Figure 5.16. In all plots, the total combined pdf is indicated
in blue, the combined signal pdf is indicated in green, any individual signal components
are indicated in cyan, and the background component is indicated in red.
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Figure 5.14: Λc mass fit and pull distribution for the semileptonic Λ+
c → pK−π+.
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Figure 5.15: Λc mass fit and pull distribution for the semileptonic Λ+
c → pK−K+.
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Figure 5.16: Λc mass fit and pull distribution for the semileptonic Λ+
c → pπ−π+.
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5.2.3 Raw and adjusted yields

The raw and adjusted yields for each channel are given in Table 5.12. We do not provide
errors on the adjusted yields, as these numbers when not taken as ratios fold in a number
of detection and production uncertainties - their meaning in isolation is limited and they
are merely given for illustration. We also note that the prompt adjusted yields fold in
trigger efficiencies, which are demonstrated to cancel between the Λ+

c → phh′ modes and
therefore not included in the final branching fraction results. The full systematic and
statistical uncertainties are derived in Section 6. We note that the adjusted yields given
also include the scaling factor of 1

0.9
for the Cabibbo-favoured yields, to account for the

10 % of the data which is used in the training.

Stream Mode Raw Yield Adjusted Yield

Prompt
Λ+
c → pK−π+ 129359± 665 1.17× 1011

Λ+
c → pK−K+ 2717± 122 2.36× 109

Λ+
c → pπ−π+ 10736± 399 8.19× 109

SL
Λ+
c → pK−π+ 304597± 631 1.24× 109

Λ+
c → pK−K+ 5448± 89 2.10× 107

Λ+
c → pπ−π+ 20598± 186 9.31× 107

Table 5.12: The raw yields for each of the prompt and semileptonically selected modes. The errors
on the adjusted yields are the errors on the extracted yields, which accounts for the statistical
uncertainty on the fitting procedure.

5.2.4 Planned update to prompt fits

The analysis procedure relies on the extraction of genuine Λ+
c → phh′ candidates from

those candidates formed from combinatorics. This was first accomplished through a fit
to the Λc candidate mass, however investigations of the promptly selected Λ+

c → phh′

signal IPχ2 distributions revealed a significant high end tail. Such a tail is consistent with
contamination from those Λc produced from decays of long-lived b-hadrons. We give a
comparison of the data and simulation for the Λ+

c → pK−π+ prompt and semileptonic
loge(IPχ

2) in Figure 5.17, where the signal distributions of the data are extracted from
fits to the Λc candidate mass.

Simulation of secondary Λc candidates was used to investigate the per-mode phase-space
averaged stripping acceptance. The Λc candidates in the sample were all verified to have
a long-lived b-hadron mother. In all cases the acceptances are higher than the prompt
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shift of the distribution in simulation), the prompt distributions do not agree. The high end tail
in the prompt data is strong evidence of secondary Λc contamination.

Λc. Importantly, the ratios of the secondary efficiencies between the Λ+
c → phh′ modes are

not consistent with the ratios of the prompt efficiencies. As such, using purely prompt
simulation to use the efficiency to correct for the candidate distributions extracted with
only a fit to the Λc mass will yield biased relative branching fraction results in the prompt
analysis.

Prompt Secondary
Mode NAcc εStrip|Acc NAcc εStrip|Acc

Λ+
c → pK−π+ 2308801 0.313± 0.004 225139 0.701± 0.018

Λ+
c → pK−K+ 2289265 0.251± 0.003 226432 0.693± 0.017

Λ+
c → pπ−π+ 2305682 0.345± 0.004 223950 0.686± 0.017

Table 5.13: The statistics and phase-space averaged stripping efficiencies for the prompt and
secondary Λc in the “prompt” simulation. We note that the subscript “Acc” refers to the condition
of passing the generator level cuts, and “Strip” refers to the condition of passing the no-PID
stripping selection (including the kinematic vetoes and DTF convergence criterion).

This informs a planned update to the yield extraction in the analyses. The prompt
yield extraction utlises a simultaneous 2D fit to the Λc mass and the Λc loge(IPχ

2) to
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extract the distribution for prompt signal candidates such that the secondary Λ+
c → phh′

component may be discriminated and treated as a background. We do not attempt to
conduct a measurement with the data in the prompt selections identified as secondary -
the muon tagged samples in the semileptonic analysis enjoy a higher selection efficiency
and greater purity, and can provide a more precise measurement of the relative branching
fractions. In the semileptonic analysis no evidence for significant prompt contamination in
the data samples is observed. Therefore the signal extraction in the semileptonic analysis
will still be accomplished with a fit to the Λc mass.

The species identified in the prompt sample are as follows:

Prompt Λ+
c → phh′ - decays of Λ+

c → phh′ where the Λc is produced either directly at
the primary interaction or from a decay from a short-lived excited charm hadron.
This is classed as the “signal”. The mass distribution of these candidates is modelled
by a Crystal Ball function [143] and a Gaussian function constrained to a shared
mean in the Cabibbo-favoured mode, and a Gaussian function in all other modes. 2

Secondary Λ+
c → phh′ - decays of Λ+

c → phh′ where the Λc is produced in the decay of
a long-lived b-hadron. This is classed as a background. The mass distribution of
these candidates is modelled by a Crystal Ball function and a Gaussian function
constrained to a shared mean in the Cabibbo-favoured mode, and a Gaussian function
in all other modes.

Combinatorics - combinations of unrelated tracks which mimic Λ+
c → phh′ decays. The

mass distribution of these candidates is modelled by a first order polynomial.

In all modes the loge(IPχ
2) candidate distributions are modelled by a Bukin function,

which is a modified Novosibirsk function with tail extended tail functions. The Bukin
functional form is

B(x;µ;σ; ξ; ρ1; ρ2) =



exp

[
ρ1

(x−x1)2

(x−x1)2
+

(x−x1)ξ
√
ξ2+1.

√
2 log 2

1
− log 2

]
x < x1

exp

[
− log 2.

[
log

(
1+2ξ
√
ξ2+1. x−µ

σ
√
2 log 2

)
log

(
1+2ξ

(
ξ−
√
ξ2+1

))
]2
]

x1 < x < x2

exp

[
ρ2

(x2−x)2

(x2−µ)2
+

(x2−x)ξ
√
ξ2+1.

√
2 log 2

1
− log 2

]
x > x2

(5.9)

2The Crystal Ball function is a Gaussian function with a power law low-end tail. It is of particular use
in parameterising the mass distributions of candidates formed from combinations of tracks from a decaying
particle, whereby unreconstructed final state radiation (FSR) results in a lower computed invariant mass
of the system which manifests in a low end power law tail.
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where ξ is the Novosibirsk asymmetry parameter,
√

2 log σ is the full width half maximum
(FWHM), µ is the position of the mode, and ρ1 and ρ2 are the left and right tail parameters
respectively. x1 and x2 are the turnover points where the function has half of its maximum
value - they are defined as:

x1 ≡ µ+ σ
√

2 log 2

(
ξ√
ξ2 + 1

− 1

)
(5.10)

x2 ≡ µ+ σ
√

2 log 2

(
ξ√
ξ2 + 1

+ 1

)
(5.11)

The function and its first derivative are continuous at x1 and x2.
The fit is a simultaneous 2D fit to the Λc mass and the Λc IPχ2. We utilise an unbinned

extended maximum likelihood fit to the data candidates. All parameters in the mass
models are allowed to float. The fit takes place over -80 – +45 MeV/c2 of the nominal
Λc mass of 2286.46 MeV/c2. In the IPχ2 models we take the shape of the combinatoric
from a fit to the mass sidebands in data and fixing all Bukin parameters in the full fit
to the results of this fit. For the prompt candidates we take initial values for the Bukin
parameters from fits to simulated candidates, allowing all parameters to float with the
exception of the ρ2 high-end tail, which lies in a region dominated by the secondaries and
so is fixed to the value extracted from simulation. The secondary shape has its tail and
asymmetry parameters fixed to values determined from fits to simulated data, while its
mean is allowed to float.

The updated fits in the prompt analysis are currently under collaboration review, and
any yields extracted using the current fit models will be updated in the future.
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Chapter 6

Λ+c → phh′ branching fraction
systematic uncertainties and results

6.1 Systematic uncertainties

The systematic uncertainties in the analyses are discussed herein. The primary sources of
uncertainty are associated with the determination of selection efficiencies and the yield
extraction.

6.1.1 PID calibration uncertainty

There are two sources of systematic uncertainty associated with the PIDCalib procedure:
the finite calibration statistics and the variation in PID efficiency across individual cali-
bration bins. These are opposing trends with respect to granularity, and are described
below.

Calibration statistics

The calibration procedure involves binning the calibration data in kinematic bins. This
results in a statistical uncertainty that increases as the bin schema becomes more granular.
Along with a PID weight associated with the calibration bin dictated by the event track
kinematics, each signal event is ascribed a PID weight error. For a calibration bin i, the
efficiency and associated error are given by:

εi = ki/ni (6.1)
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σ(εi) =

√∣∣∣∣εi(1− εi)ni

∣∣∣∣ (6.2)

where ni is the total number of calibration tracks in bin i and ki is the number of calibration
tracks in bin i surviving the PID cut.

In order to propagate this uncertainty in terms of final adjusted yields we utilise a
toy simulation approach. The PID performance histograms have their bin efficiencies
reassigned with a random number generated from a normal distribution with the measured
bin efficiency as the mean and the error on the measured efficiency as the variance. The
PID weights are then reasigned and an adjusted yield is recalculated. This procedure is
repeated 1000 times. The toy simulation adjusted yield distribution is then fitted with a
Gaussian function and the variance over the nominal adjusted yield is taken as a fractional
systematic. Example adjusted yield distributions of the toy simulations are shown in
Figure 6.1 for the prompt and semileptonic Λ+

c → pK−π+ decay channels.
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Figure 6.1: The Λ+
c → phh′ adjusted yields of the toy simulation, fitted with a Gaussian function.

The variance over the mean of the Gaussian function is taken to be the fractional systematic on
the individual adjusted yields. The only efficiency correction applied is the PID weighting.

Efficiency variation across calibration bins

As the width of bins in the calibration sample increases, so does the variation of PID
response within a given bin. If the kinematic distribution of the signal sample is not the
same as that of the calibration sample, this can result in average PID cut efficiencies that
are not the same between the signal and calibration modes within individual calibration
bins. This systematic uncertainty is dependent on the binning schema utilised and on
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the kinematic distribution of the signal sample. As such, this must be evaluated with
simulated signal and calibration data. As the simulated calibration and signal samples
both have the same poorly modelled PID distributions, any discrepancy between the true
cut efficiency and that evaluated from PIDCalib will be due to binning effects.

No simulated Λ→ pπ− samples existed in the PIDCalib framework at the time the
analysis was conducted, so MC samples were prepared by the candidate. These samples
are outlined in [144]. PID performance histograms are constructed from the calibration
simulation, and the calibration procedure is repeated with the simulated signal samples
with a PID cut applied. This is then compared to the true efficiency of the PID cut as
evaluated using the MC truth information. Our calibration procedure does not account
for the number of tracks in the event because the distributions of this quantity in the
individual modes is consistent. this results in our PID efficiencies being inaccurate by a
constant factor when taken in isolation, but they cancel when the ratio of the efficiencies
is taken for the relative branching fraction results. As such, we take the ratio of the
PIDCalib efficiencies and compare these to the ratio of the true efficiencies of the PID
cuts. The discrepancy in this quantity is dependent on the PID cut used, and to account
for this the procedure is repeated for DLL values ±3 of the nominal value used in the
analysis.

The binning systematic is defined as:

σbins =

∣∣∣∣εtrue|pKπεtrue|phh
− εPIDCalib|pKπ
εPIDCalib|phh

∣∣∣∣ (6.3)

where εtrue|phh is the true efficiency of a given PID cut on the Λ+
c → phh′ mode in question,

and εPIDCalib|phh is the efficiency of the PID cut on the mode in question as evaluated
with the PIDCalib method. This discrepancy is shown for the prompt relative branching
fraction measurements in Figure 6.2. It should be noted that the large errors on these
points are due to the low numbers of simulated events which survive our selection.

It was found that the proton PID response in this analysis varies much more rapidly
across the kinematic phase space than the kaon or pion PID response - this is a result of
both the RICH characteristics and also the harsher PID cuts placed upon protons in these
analyses than kaons or pions. This resulted in a measured discrepancy in the individual
proton track efficiencies that was significantly higher than the individual kaon and pion
track efficiencies. As such, the maximum discrepancy while varying the proton log (Lp/LK)

response was used as the basis for the quoted systematic. A systematic uncertainty is
assigned as the combination in quadrature of the statistical uncertainty of the discrepancy
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at the nominal value and the largest difference between the nominal discrepancy and any
other discrepancy value in the scanned log (Lp/LK) range.
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Figure 6.2: The discrepancy in simulation for the true and PIDCalib evaluated PID effiencies
for the promptly produced Λ+

c → pK−K+ to Λ+
c → pK−π+ ratio (left) and the Λ+

c → pπ−π+ to
Λ+
c → pK−π+ ratio (right). The discrepancy is given in %.

The systematic errors are shown for the relative semileptonic Cabibbo-suppressed
measurements in Figure 6.3. These discrepancies are considerably lower than the corre-
sponding disrepancies in the prompt measurements. This is explained by the looser PID
cuts applied in the semileptonic selection. Generally, as PID cuts become tighter, variation
of the PID efficiency over the p – η space becomes more rapid, leading to higher variation
of PID response over individual bins in our schema.

6.1.2 Selection efficiency uncertainty

The uncertainty in the selection efficiency is dominated by the stripping efficiency un-
certainty - the evaluation of the stripping efficiency systematic uncertainty is given in
Section ??. The remaining contributions from the binomial uncertainty on the generator
and trigger level uncertainties are much smaller, as we do not need to subdivide the
samples to account for resonant contributions to the Λc decay.

6.1.3 Uncertainty due to fit model

There is a systematic uncertainty associated with our yield extraction and fit model to
the Λc mass and loge(IPχ

2). To evaluate the dependence of the extracted yields on the fit
model we vary the components of the fit to check for significant variations in extracted
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Figure 6.3: The discrepancy in simulation for the true and PIDCalib evaluated PID efficiencies for
the semileptonically produced Λ+

c → pK−K+ to Λ+
c → pK−π+ ratio (left) and the Λ+

c → pπ−π+

to Λ+
c → pK−π+ ratio (right). The discrepancy is given in %.

signal. In the fits to the Λc mass, we use both Crystal Ball functions and Gaussian
functions for the signal (and secondary component in prompt), while we utilise exponential
functions, first and second order polynomial functions to paramaterise the combinatoric
background component. In the prompt fits to the Λc loge(IPχ

2) we substitute the Bukin
functions for bifurcated Gaussian functions.

We take the standard deviation of the ensemble of extracted signal yields using all
permutations of the combined models as the systematic uncertainty associated with the
yield extraction. The standard deviation in extracted yield over the mean of the extracted
yield is quoted as a per-mode systematic error. These are combined in quadrature to give
systematic errors on the relative branching fraction measurements.

6.1.4 Uncertainty from input parameters

A systematic uncertainty will arise from our use of input parameters to extract the
absolute branching fractions using our relative values, specifically the absolute value
of B (Λ+

c → pK−π+). The PDG’s current listings for the branching fraction provide a
measurement taken as an average of a series of model-dependent results [10]. Their
currently quoted value for B (Λ+

c → pK−π+) is (5.0 ± 1.3) %.
To extract absolute branching fractions for the Cabibbo-suppressed modes using

our relative measurements we instead use a recent model independent measurement
by the Belle Collaboration [145]. The measurement adopts a model-independent ap-
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proach by reconstructing the recoiling momentum of the D∗−pπ+ system in the decay
e+e− → D∗−pπ+ Λ+

c to acquire Λ+
c without reconstructing the Λ+

c decay. They measure
B ( Λ+

c → pK−π+) = (6.84 ± 0.24 ± 0.21) % where the first errors are statistical and the
second are systematic. As such, we use the Belle result, which represents a significant
improvement over the previous PDG average of model-dependent results.

6.1.5 Systematic uncertainties summary

The systematic uncertainties associated with the measurements are outlined in Table 6.1
through Table 6.4. We note that the systematic errors assigned for “Other finite MC stats”
is that arising from limited MC statistics only in the determination of the generator level
and trigger level efficiencies. Both calculations enjoy significantly larger statistics than
the calculations for the stripping efficiency (due to the low stripping efficiencies and also
the division of the stripping simulation into kinematic bins for efficiency reweighting). As
such, both are small compared to other systematic errors in the analysis. The systematic
uncertainties in Table 6.1 – Table 6.4 are either attributed to individual modes, or are
derived with some combination of the modes (for example our PIDCalib systematics which
are based on the ratio of efficiencies between modes) and indicated as such. The “total”
systematics are the sum in quadrature of the individual systematic components.
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Systematic Mode Magnitude [%]

Stripping reweighting - MC stats Λ+
c → pK−π+ 2.1

Λ+
c → pK−K+ 3.0

Stripping reweighting - binning Λ+
c → pK−π+ 1.0

Λ+
c → pK−K+ 1.1

Fit model uncertainty Λ+
c → pK−π+ 0.2

Λ+
c → pK−K+ 2.1

PIDCalib - Calib Stats Combined 0.2
PIDCalib - binning Combined 1.8
Other finite MC stats Combined 0.2
Total - 4.8

Table 6.1: Prompt B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) systematics

Systematic Mode Magnitude [%]

Stripping reweighting - MC stats Λ+
c → pK−π+ 2.1

Λ+
c → pπ−π+ 2.4

Stripping reweighting - binning Λ+
c → pK−π+ 1.0

Λ+
c → pπ−π+ 0.3

Fit model uncertainty Λ+
c → pK−π+ 0.2

Λ+
c → pπ−π+ 3.0

PIDCalib - Calib Stats Combined 0.1
PIDCalib - binning Combined 1.5
Other finite MC stats Combined 0.2
Total - 4.8

Table 6.2: Prompt B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) systematics
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Systematic Mode Magnitude [%]

Stripping reweighting - MC stats Λ+
c → pK−π+ 0.3

Λ+
c → pK−K+ 0.7

Stripping reweighting - binning Λ+
c → pK−π+ 1.3

Λ+
c → pK−K+ 1.5

Fit model uncertainty Λ+
c → pK−π+ 0.5

Λ+
c → pK−K+ 0.5

PIDCalib - Calib Stats Combined 0.1
PIDCalib - binning Combined 0.4
Other finite MC stats Combined 0.4
Total - 2.3

Table 6.3: SL B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) systematics

Systematic Mode Magnitude [%]

Stripping reweighting - MC stats Λ+
c → pK−π+ 0.3

Λ+
c → pπ−π+ 1.1

Stripping reweighting - binning Λ+
c → pK−π+ 1.3

Λ+
c → pπ−π+ 2.1

Fit model uncertainty Λ+
c → pK−π+ 0.5

Λ+
c → pπ−π+ 1.5

PIDCalib - Calib Stats Combined 0.1
PIDCalib - binning Combined 0.4
Other finite MC stats Combined 0.7
Total - 3.2

Table 6.4: SL B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) systematics
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6.2 Λ+
c → pπ−K+ significance extraction and confidence

intervals

The statistical significances of the unobserved Λ+
c → pπ−K+ modes are calculated from

the change in the logarithm of the likelihood profiles (∆lnL) of the nominal mass fit with
varying fixed values of signal yield. Therefore, the significance is given, in accordance with
Wilks’ theorem [146], by:

Significance =
√
−2∆lnL . (6.4)

As the systematic errors have proven much smaller than the statistical errors in the analysis
of the doubly-Cabibbo suppressed decays, we will ignore systematic errors in the calculation
of Wilks’ theorem. In the event of observing a Λ+

c → pπ−K+ signal consistent with zero
we utilise Wilks’ theorem to derive upper limits on the signal yields, and correspondingly
on the relative branching fractions.

6.3 Λ+
c → pπ−K+ results

6.3.1 Yield extractions

In this section we give the yield extractions for the doubly-Cabibbo suppressed modes. We
remained ignorant of the candidate masses in the signal region until the selection, yield
extraction, efficiency determinations and systematic uncertainties had been evaluated.
The fit models to the Λc candidate mass are identical to those used in the singly-Cabibbo
suppressed modes. The fits to the data and the pull distributions are shown in Figure 6.4
for the prompt channel and in Figure 6.5 for the semileptonic channel. The extracted signal
yields are consistent with zero in the prompt analysis and 539 ± 64 for the semileptonic
analysis.

6.3.2 Efficiency corrections

We remind the reader that the generator-level and the trigger efficiencies cancel between
the Cabibbo-favoured and the doubly-Cabibbo suppressed modes, as the acceptance is flat
across the variable space characterising the resonant decay. We are able to successfully
distinuish the Λ+

c → pπ−K+ data in the semileptonic analysis, and so are sensitive to the
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Figure 6.4: Λc mass fit and pull distribution for the promptly selected Λ+
c → pπ−K+.

different resonance structure of the decay compared to the Cabibbo-favoured. As we are
not sensitive to the kinematics of any promptly-produced Λ+

c → pπ−K+, we must assume
that its efficiency is the same as the promptly-produced Λ+

c → pK−π+.
Herein we provide the selection efficiencies for the semileptonic Λ+

c → pπ−K+. The
efficiencies of the PID selection and the stripping selection are data-driven and informed by
the data kinematics respectively, and as such could only be evaluated prior to unblinding
the signal windows. The stripping selection efficiencies for Λ+

c → pK−π+ and Λ+
c → pπ−K+

are given in Table 6.5, while the PID efficiencies are given in Table 6.6. The full selection
efficiencies are given in Table 6.7.

6.3.3 Systematic uncertainties

The systematic uncertainties are evaluated in the same fashion as the relative branching
ratios of the Cabibbo-suppressed measurents. The systematic “Finite MC stats” which
was present in those measurements is not present here, as the trigger and generator-level
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Figure 6.5: Λc mass fit and pull distribution for the semileptonically selected Λ+
c → pπ−K+.

Analysis Mode εStrip|Acc [%]

Semileptonic Λ+
c → pK−π+ (1.194± 0.016)%

Λ+
c → pπ−K+ (1.111± 0.020)%

Table 6.5: The Λ+
c → pπ−K+ stripping efficiencies after the re-weighting procedure is applied to

the Λ+
c → pK−π+ simulation.

efficiencies cancel. The systematic uncertainties summaries are provided in Table 6.8.

Analysis Mode εPID|Strip [%]

Semileptonic Λ+
c → pK−π+ 47.95± 0.05

Λ+
c → pπ−K+ 50.48± 0.05

Table 6.6: The Λ+
c → pπ−K+ PID efficiencies, as calculated using the PIDCalib technique.
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Analysis Mode εTotal

Semileptonic Λ+
c → pK−π+ (2.71± 0.01)× 10−4

Λ+
c → pπ−K+ (2.67± 0.01)× 10−4

Table 6.7: The total selection efficiencies in the Cabibbo-favoured and doubly-Cabibbo suppressed
channels. The errors are the statistical errors from finite signal simulation and PIDCalib calibration
data only.

Systematic Mode Magnitude [%]

Stripping reweighting - MC stats Λ+
c → pK−π+ 0.3

Λ+
c → pπ−K+ 0.4

Stripping reweighting - binning Λ+
c → pK−π+ 1.3

Λ+
c → pπ−K+ 1.8

Fit model uncertainty Λ+
c → pK−π+ 0.5

Λ+
c → pπ−K+ 2.1

PIDCalib - Calib Stats Combined 0.2
PIDCalib - binning Combined 2.0
Total - 3.3

Table 6.8: SL B(Λ+
c → pπ−K+)/B(Λ+

c → pK−π+) systematics

6.3.4 Signal significance extractions

The significance of the semileptonic signal is taken from Wilks’ theorem. The semileptonic
−∆ Log-likelihood as a function of signal yield is shown in Figure 6.6. The significance is
found to be 11.1σ for the semileptonic channel. This corresponds to a significant discovery,
the first of this mode. We note that this is the first doubly-Cabibbo suppressed mode of a
charmed baryon to be observed.

We use Wilks’ theorem to set upper limits on the prompt Λ+
c → pπ−K+ yield, and in

turn set upper limits on the relative branching fraction B(Λ+
c → pπ−K+)/B(Λ+

c → pK−π+).
We do not have access to the Λc daughter kinematics for the doubly-Cabibbo suppressed
mode, and so must assume a constant efficiency between the two samples. The prompt
−∆ Log-likelihood as a function of signal yield is shown in Figure 6.7. The 95 % upper
limit on the signal yield is 350, corresponding to an upper limit on the relative branching
fraction B(Λ+

c → pπ−K+)/B(Λ+
c → pK−π+) of < 2.71× 10−3 @ 95 % C.L..
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Figure 6.6: The −∆ Log-likelihood as a function of the semileptonic Λ+
c → pπ−K+ signal yield.

The −∆ Log-likelihood with respect to the null hypothesis is 62.2, corresponding to an observed
significance of 11.1 σ.
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Figure 6.7: The −∆ Log-likelihood as a function of the prompt Λ+
c → pπ−K+ signal yield. The

lowest signal yield corresponding to an increase in −∆ Log-likelihood of 1.645, or a 95 % one-sided
confidence interval, is 350.
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6.4 Relative branching fraction results

Now that we have determined full per-mode selection efficiencies and raw yields the
expression for the relative branching fraction of a given Λ+

c → phh′ mode is:

B(Λ+
c → phh′)

B(Λ+
c → pK−π+)

=
N

[Λ+
c → phh′]

N
[Λ+
c → pK−π+

]

×
ε

[Λ+
c → pK−π+

]

ε
[Λ+
c → phh′]

(6.5)

where N indicates the raw yield and ε the full selection efficiency of the designated mode.
The final relative branching fractions for the prompt and semileptonic analyses are given
in Table 6.10. The first errors are statistical (the sum of weights squared errors on the
respective yields combined in quadrature), the second are the full systematics in the
analysis.

Measurement Prompt Semileptonic
B(Λ+

c → pK−K+
)

B(Λ+
c → pK−π+

)
(2.03± 0.07± 0.10)× 10−2 (1.68± 0.03± 0.07)× 10−2

B(Λ+
c → pπ−π+

)

B(Λ+
c → pK−π+

)
(7.04± 0.19± 0.34)× 10−2 (7.45± 0.06± 0.24)× 10−2

B(Λ+
c → pπ−K+

)

B(Λ+
c → pK−π+

)
< 2.71× 10−3 @ 95 % C.L. (1.62± 0.15± 0.05)× 10−3

Table 6.9: Final relative branching fractions for Λ+
c → pK−K+ , Λ+

c → pπ−π+ and Λ+
c → pπ−K+

with respect to Λ+
c → pK−π+. The first errors are statistical, the second are the full systematic

errors in the analysis.

6.5 Extraction of absolute branching fractions

These results are obtained by combining the relative results with the model independent
measurement of the absolute Λ+

c → pK−π+ branching fraction from the Belle collabora-
tion [145] to extract the absolute branching fractions of the Cabibbo-suppressed modes
for Λ+

c → pK−K+, Λ+
c → pπ−π+ and Λ+

c → pπ−K+ in both the prompt and semileptonic
analyses. The external uncertainty quoted comes from the uncertainty on the absolute
Λ+
c → pK−π+ branching fraction.
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Measurement Analysis Value

B(Λ+
c → pK−K+)

Prompt (1.39± 0.05 (stat)± 0.07 (syst)± 0.07 (ext))× 10−3

SL (1.15± 0.03 (stat)± 0.06 (syst)± 0.05 (ext))× 10−3

B(Λ+
c → pπ−π+)

Prompt (4.82± 0.13 (stat)± 0.23 (syst)± 0.23 (ext))× 10−3

SL (5.10± 0.04 (stat)± 0.16 (syst)± 0.24 (ext))× 10−3

B(Λ+
c → pπ−K+)

Prompt < 1.85× 10−4@ 90 % C.L.
SL (1.11± 0.10 (stat)± 0.04 (syst)± 0.05 (ext))× 10−4

Table 6.10: Final absolute branching fractions for Λ+
c → pK−K+ , Λ+

c → pπ−π+ and Λ+
c → pπ−K+

with respect to Λ+
c → pK−π+. The first errors are statistical, the second are the full systematic

errors in the analysis, the third are the external uncertainties from our use of the BELLE
measurement of the absolute Λ+

c → pK−π+ branching fraction.
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Chapter 7

Summary and conclusions

7.1 Summary

This thesis began with a theory review of the Standard Model (SM) of particle physics in
Chapter 1. Therein the development of the quark model was described, along with the
theory of the Cabibbo-Kobayashi-Maskawa quark mixing matrix underpinning the coupling
of quarks via the weak interaction. This was followed by a review of recent charmed baryon
calculations from theory, specifically from lattice Quantum Chromodynamics (QCD)
and the Heavy Quark Effective Theory (HQET). The chapter concluded by discussing
experimental results in charmed hadron spectroscopy, including recent efforts in identifying
new states and amplitude analysis of charmed baryon decays.

In Chapter 2, the design and performance of the Large Hadron Collider beauty (LHCb)
experiment at the Large Hadron Collider (LHC) was presented. The systems responsible
for particle tracking, particle identification (PID), and particle calorimetry were described.
The functionality and performance of the LHCb trigger system was given, along with a
description of the Monte Carlo generators used by LHCb to simulate proton collisions,
heavy-flavour decays, and particle transport through the detector.

In Chapter 3, the RICH system at LHCb was detailed, including the design and
operation of the RICH1 and RICH2 detectors. A track-based reconstruction method is
detailed, which is used to assign relative likelihoods of the identities of charged particles
which radiate Cherenkov photons in the RICH. A data-driven correction for selections
utilising these PID estimators is outlined, along with the datasets of cleanly reconstructed
decays used to perform the correction. The development of new heavy-flavour samples of
calibration protons from Λ+

c → pK−π+ decays is described. The helicity information of
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the Λc decay is used as a powerful discriminant between signal decays and combinatoric
backgrounds. A series of cross checks are described to monitor the systematic uncertainties
in the extraction of the kinematic distributions of the signal protons.

The results of a study of the RICH1 aerogel performance were presented. This study
demonstrated that, despite a notable improvement in the performance in 2012 relative to
2011, the discrimination between charged species provided by the aerogel is at a far lower
level than that afforded by the gas radiators. These results were of key influence in the
decision by the LHCb collaboration to remove the aerogel from the RICH1 detector for
the upcoming LHC run II.

In Chapters 4 – 6, the results of an analysis to measure the relative branching fractions
of Λ+

c → phh′, where hh′ ∈ {K−π+, K−K+, π−π+, π−K+}, was presented. The analysis
used a dataset gathered with the LHCb detector in 2011, corresponding to an integrated
luminosity of 1 pb−1. This analysis utilised Λc produced from two sources - Λc produced
promptly at the primary interaction and Λc produced in the decay Λ0

b→ Λ+
c (pK−π+)µ−νµ.

The measurements of the branching fractions of the singly-Cabibbo suppressed channels
relative to the Cabibbo favoured were:

B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) = (2.03± 0.07 (stat)± 0.10 (syst))× 10−2,

B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) = (7.04± 0.19 (stat)± 0.34 (syst))× 10−2

while in the semileptonic analysis they were

B(Λ+
c → pK−K+)/B(Λ+

c → pK−π+) = (1.68± 0.03 (stat)± 0.04 (syst))× 10−2,

B(Λ+
c → pπ−π+)/B(Λ+

c → pK−π+) = (7.45± 0.06 (stat)± 0.24 (syst))× 10−2,

These results are the most precise measurements of both relative branching fractions made
to date. The two measurements of B(Λ+

c → pK−K+)/B(Λ+
c → pK−π+) show a discrepancy

of 2.6 σ. It is believed that a small amount of non-prompt background in the prompt
signal accounts for this difference. The B(Λ+

c → pπ−π+)/B(Λ+
c → pK−π+) measurements

are compatible within 0.9 σ.
The analysis also included a search for the hitherto unobserved doubly-Cabibbo

suppressed decay Λ+
c → pπ−K+. The decay was found unambiguously in the semileptonic

analysis, with a signal significance of 11.1σ. The branching fraction of the mode relative
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to the Cabibbo-favoured was measured to be:

B(Λ+
c → pπ−K+)/B(Λ+

c → pK−π+) = (1.62± 0.15 (stat)± 0.05 (syst))× 10−3 .

Utilising the recent BELLE measurement of the absolute Λ+
c → pK−π+ branching fraction,

we extract the absolute branching fraction:

B(Λ+
c → pπ−K+) = (1.11± 0.10 (stat)± 0.04 (syst)± 0.05 (ext))× 10−4

We note that this is the lowest recorded branching fraction of any charmed baryon decay
to date. While we do not observe the decay in the prompt analysis, we are able to place
an upper limit on the decay of:

B(Λ+
c → pπ−K+) < 1.85× 10−4@ 90 % C.L.

which is compatible with our observation of this decay mode in the semileptonic analysis.

7.2 Outlook

There still remain a great many observations to be recorded in the field of charmed baryon
spectroscopy, and LHCb has the potential to make a great many of these. The plentiful
production of charm in LHC collisions, along with the detector’s versatility in recording
heavy-flavour decays, provides the detector with the ability to gather unprecedented
datasets on a variety of charmed baryons.

In the observation of the decay Λ+
c → pπ−K+, the dominant errors in the analysis

are statistical in nature. With more data, more precise measurements of the relative
branching fractions can be made. A significant amount of valid signal in the analysis was
lost due to the lack of PIDCalib calibration data. Thanks to the new datasets described
in Chapter 3, future analyses of decays containing protons in the final state will be able
to retain greater signal yields. In future Λ+

c → phh′ analyses, the lack of any kinematic
vetoes on the candidates will also lessen the sculpting of the acceptance with respect to the
variables characterising the resonant Λc decay. As a consequence, the selection efficiencies
of future analyses will be better understood.

This analysis has demonstrated that the LHCb datasets of the Cabibbo-suppressed
Λc decays are abundant enough that a first amplitude analysis of these decays can be
conducted at LHCb. With the precise vertexing and decay-time resolution achievable at
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the experiment, the charmed baryon lifetimes will be measured to a very high precision
at LHCb. These endeavours will be bolstered by the large dataset LHCb is expected
to gather in the upcoming LHC run II, and provide the experiment with the ability to
continue to make charmed baryon discoveries throughout its lifetime.

LHCb continues to search for doubly-charmed baryon production, such that the nature
of the SELEX observation might finally be confirmed. Recent theory calculations suggest
that with 10 fb−1 of LHCb data, around the order of 105 decays of triple-heavy baryons
can be recorded at LHCb [147].
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Appendix A

Optimum descriptions of efficiency
spaces

A common problem in LHCb analyses, and in HEP analyses in general, is poor modelling
in the simulation of a signal decay, where the simulation must be used to apply an
efficiency correction that cannot be determined using some data-driven method. This
usually necessitates some re-weighting approach, such that the simulation candidates are
re-weighted according to the real data distributions relevant to the acceptance of the
selection. A common solution to this problem is to identify variables which are both badly
modelled and on which the acceptance of the selection depends - the simulation should
then be binned in these variables, and by counting the numbers of simulated candidates
that survive the selection and the number of simulated candidates generated in each
bin, local efficiencies in the variable space can be derived. The data candidates are then
assigned per-candidate efficiencies dependent on their location in the variable space. In
this way the efficiencies of each simulation bin are re-weighted by the data population in
the corresponding bin .

A.1 Systematics in efficiency re-weightings

This approch raises another concern: how should the simulation be binned? The systematic
uncertainties of the re-weighting procedure are highly dependent on the choice of binning
schema. The binning schema should be informed by considerations of:

• The distributions of the simulated data in the re-weighting variables. In local variable
space regions of high simulation population, statistical uncertainties become lower,
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and more granular binnings may be considered.

• The relative distributions of both the data and the simulation. In regions of the
variable space where the data and simulation agree, little to no re-weighting is
required. Where the distributions disagree, high granularity is desirable.

• The distributions of the selection acceptance. In regions where the acceptance is
constant, there is no need to locally divide the simulation into bins. Where the
acceptance varies rapidly, it is desirable to increase the binning granularity in that
region of the variable space. If the binning granularity is not fine enough, information
on the efficiency structure is lost.

These considerations directly pertain to the systematic uncertainties and biases that are
incurred during the re-weighting procedures. Systematic uncertainties - and biases - can
arise from several sources:

Limited calibration statistics. As the binning schema becomes more granular, the
statistics in each bin become lower. This results in a higher binomial error on the
bin efficiency. This can also result in biases to the re-weighted efficiencies. The bias
is only relevant when statistical fluctuations become very high, and is fully outlined
in Appendix B.

Variations in efficiency over individual bins. The re-weighting relies on the bins
being small enough that the efficiency in each bin is approximately single-valued.
Due to the finite bin size, there is some finite variation in efficiency over the individual
bins. As the kinematics of the data and MC are different, the average efficiency in
one particular bin can be different in the data and MC, leading to potential biases.
This effect becomes more severe with larger bins.

The first may be evaluated with a toy simulation approach, provided certain conditions
are met. The second is more problematic to evaluate, but the use of multiple schemas
may give an idea of the magnitude of the systematic error, motivated by a meta-analysis
of the bin efficiencies (which will be outlined later).

A.1.1 Limited MC statistics - inflation of error

In any binning schema, each bin has a binomial uncertainty associated to it. To propagate
this error through to the final extracted efficiency, we utilise a toy approach. In this
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method, we take a particular binning schema and evaluate efficiencies and binomial errors
for each bin:

ε =
Nstrip

Ngen

σε =

√
ε(1− ε)
Ngen

(A.1)

We then generate a large number of toy efficiency histograms based on the original. For
every toy, in each bin we randomly resample the number of events which pass the selection
from a binomial distribution, using the original number of candidates generated in said bin
and the efficiency of the original bin such that Ngen is the mean and ε is the probability of
the binomial distribution. We then use each binning schema to assign a stripping efficiency
to each real data candidate, and then from the efficiency-corrected yield extract a new
stripping efficiency for the mode using the candidate sWeights:

M =
n∑
i=1

wi
εi

ε̄ = N/M

(A.2)

where wi is the candidate sWeight, εi the candidate stripping efficiency, M the adjusted
yield, N =

∑n
i=1wi the extracted raw yield and ε̄ the re-weighted average efficiency.

In such a fashion, for each toy an ε̄ is calculated. We then take the standard deviation
of the ε̄ distribution over the original efficiency as a fractional systematic uncertainty. This
method only provides an accurate systematic in the case whereby valid efficiencies will be
returned after randomisation. In the case of errors resampled from a binomial distribution,
this method breaks down when the probability of randomising zero stripped candidates is
non-negligible. This provides a limit on the granularity of the bin schemas used in the
re-weighting, although in practice this is less strict than the high granularity boundary
imposed by the efficiency bias outlined in Appendix B.

A.1.2 Variations in efficiency over individual bins

In any binned re-weighting approach, it is necessary that the granularity of the binning
schema be fine enough that it sufficiently accounts for the true variation in the underlying
efficiency. Parameterising this in a proper fashion is problematic - the only way to assess
whether or not there is finer structure in the efficiency than a given binning can account
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for is to adopt a finer binning and check for regions whereby new structure appears, or to
check if the re-weighted average efficiency is altered outwith the statistical uncertainty.
Naturally, the number of subdivisions that can be made locally is limited by the low
statistics thresholds mentioned in the previous section - eventually either the statistical
uncertainty on the extracted efficiency becomes so large as to obscure any genuine changes
in local efficiency or to bias the efficiency, or the the probability of the toy bins not being
assigned a valid efficiency becomes non-negligible (i.e. when the likelihood of returning
zero new events passed in a given bin becomes non-negligible in our binomial resampling).

A.1.3 The κ statistic

A.1.4 The κ bin boundary parameter

Ultimately we wish to minimise the overall systematic uncertainty arising from these
opposing trends. For better or worse, this is usually done visually by analysts. By
investigating the acceptance in different binning granularities and examining the statistical
errors on each bin an optimum can be loosely determined. This is problematic in two
ways:

1. This is a subjective approach, and lacks a quantitative statement of what constitutes
the optimum binning.

2. This only applies to multidimensional structures which can be easily visualised. Any
re-weightings of dimensionality 3 or higher are almost impossible to judge “by eye”.

As such, we seek a quantititive method of assessing the choice of a bin schema, which is
applicable for any dimensionality, regardless of ease of visualisation.

We posit that while not mathematically equivalent to minimising the systematic, that
providing the best description of the efficiency space possible with a given sample size of
simulation statistics will ensure a close to optimum systematic when the efficiency bin
schema is used in re-weightings. To this end we investigate the difference in efficiency
relative to the statistical error on efficiency at each bin boundary. This weighted difference
in efficiency between bin a and bin b, κab, may be expressed as:

κab =
|εa − εb|√
σ2
a + σ2

b

(A.3)
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• If this quantity is small, then the variation in efficiency between the bins relative
to the error on said bins’ efficiencies is small. This may be interpretted that
the binomial efficiency on the bin efficiencies is taken to be large relative to the
necessary parametrisation of the local variations in efficiency, and that for an
optimum description of the efficiency the bins should be merged at the boundary.
This will entail a sufficiently granular binning to provide an accurate description of
the efficiency in the local region but with a lowered binomial error on the merged
bin efficiency.

• If this quantity is high, then there is a large, statistically significant difference in
efficiency between the adjacent bins. This may be interpretted that the variation
in efficiency across the bin boundary is very high, and that variation in efficiency
across the bins themselves will be significant. This implies the assumption that
the efficiency is approximately single-valued in the bins forming the boundary -
which is necessary in the re-weighting procedure - is a poor one. As such, the
description of the efficiency space may be further optimised by imposing a higher
binning granularity in these regions.

This is complicated by the effects of genuine statistical fluctuation on individual bin
efficiencies - as such, the single κ values of boundaries can be misleading. Instead, the
relevance of κ values lies in their distributions across an entire schema. By looking at these
instead of individual bin boundaries, this mitigates the effects of efficiency fluctuation and
gives a more meaningful description of the suitability of the schema.

This is not a perfect panacea to binning problems, nor does it give a definite estimate
of the systematic uncertainty incurred in any re-weighting using a particular schema - this
is still very much dependent on the distributions of the data which are re-weighted using
the schema.

It is also still possible to conceive of local variations within a given bin which average
out, leading to the overall bin efficiency satisfying this criteria with its neighbours. The only
way to investigate potential local variations is to divide the bins and check for emergent
structure - something which ultimately becomes unfeasible as the statistical limitations of
the simulation sample come into play.

We may, however, confidently say that the κ statistic provides a method of quantitatively
finding the best description of a multidimensional efficiency space with the statistics
available. This may be loosely interpreted as the most granular binning schema permitted
with the statistics available before statistical uncertainties on the individual bins dominate
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over genuine efficiency structure.

A.1.5 Optimum κ distributions

We posit that for an optimum binning schema the distribution of κ for all combinations
of bins should be normally distributed about 1. This will result in each adjacent bin
possessing an efficiency approximately 1 standard error from its neighbours. The width on
the κ distribution would arise from genuine statistical fluctuation of bin efficiencies - it
is expected that some adjacent bins will have efficiencies which fluctuate away from one
another and that some adjacent bins will conversely fluctuate towards one another.

Practically, such a perfect schema is almost impossible for the following reasons:

• Assuming that the genuine efficiency structure has efficiency isobars which do not
vary orthogonally with respect to the binning variables, one requires polygonal
bins to achieve a perfect binning. We are practically restricted to bins which are
rectangular (or some n-orthotope/hyperrectangle in higher dimensions). As such the
bins will likely not align with the genuine efficiency isobars in the variable space,
and will be sub-optimal.

• For simplicity we generally consider binning schemas with uniform divisions. If the
efficiencies do not vary uniformly, as is very likely the case, the schema is sub-optimal.

A.1.6 Practical κ distributions

Given we deal with uniform binning schemas with rectangular bins, we consider what the
κ distributions would look like for uniform schemas in the cases of those that are extremely
finely binned and extremely coarsely binned. This should aid in our interpretation of the
distributions.

• For a schema which is too coarse, we give the example of the SL Λ+
c → pK−π+

stripping efficiency in 5× 5 bins of cos θp and φh1h2 (this quantity is demonstrated
in the next section to be optimally binned at much higher granularity).

• For a schema which is too fine we give the κ distribution for a full 5D re-weighting
of the SL Λ+

c → pK−π+ stripping efficiency in all Λ+
c resonant variables, with 9 bins

per variable. This results in the 100 k events we have for this mode passing the
stripping selection being split over approximately 60 k bins - clearly this will result
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in the order of one event passing selection in each bin and correspondingly large
efficiency uncertainties.

The two distributions are given in Figure A.1. It can be seen that in the low granularity
case, the mean κ is very high, around 7.5. This indicates that the average difference in bin
efficiencies is around 7.5 σ. At this low granularity the bins are demonstrably large enough
that the efficiency across them relative to the binomial error is very high. This suggests
that a more complete description of the efficiency space may be achieved by increasing the
granularity given the statistics available.

In the case for which the granularity is too high, we can see that the distribution looks
approximately normally distributed around zero and positive definite. We can interpret
this as the efficiency structure being “washed out” by the high binomial uncertainty on
the individual bin efficiencies. In such a case any variation in efficiency between bins will
be dominated by statistical fluctuations. As the κ value is the difference in efficiency
normalised to the error, we would expect an approximately normal distribution of κ values.
In such a situation, clearly a more meaningful efficiency description can be attained by
decreasing the binning granularity.

As such, we might expect that our uniformly binned efficiency schemas will possess κ
distributions with elements from both these extremes. Contributions from regions where
the efficiency does not vary significantly will have κ normally distributed around zero,
and contributions from regions where the efficiency varies too rapidly will result in bin
boundaries with outliers of high κ. Our aim is to balance these contributions. We make
the ansatz that for uniform bin schemas with rectangular boundaries, mean κ values which
are close to 1 will indicate binning schemas which represent a good balance between the
two opposing systematic trends.

A.1.7 A practical case in 2D

To properly introduce the κ statistic we use an example which serves to demonstrate these
properties of κ distributions. We possess more MC for SL Λ+

c → pK−π+ than the other
decay modes in the analyses, so let us use this as an example.

The stripping efficiency is known to vary with all resonant variables in this mode. It is
easy to visualise the efficiency distribution in up to two dimensions, so we will investigate
a two-dimensional efficiency space. We pick two of the resonant variables at random, in
this case cos θp and φh1h2, and plot their efficiency using various granularities of uniform
binning schemas. We utilise 5× 5, 10× 10, 20× 20, 30× 30 and 40× 40 binnings. We
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then calculate the κ values for the binning schemas, such that all pairs of adjacent bins
are accounted for. These are then plotted to examine the distribution shapes.

The efficiency histograms and corresponding κ distributions are shown in Figure A.2
and Figure A.3. It can be seen that a 5× 5 description of the efficiency space is clearly
too coarse to resolve the fine structure. The κ values are correspondingly high, with a
mean around 7.5. This indicates that the average bin efficiency separation in terms of the
efficiency error is 7.5 σ, and that across each bin there is a large efficiency variation - the
approximation that the efficiency is single-valued in the bin is clearly not a good one.

As we increase the granularity we see more of the efficiency structure is resolved. The
low efficiency regions centred at cosφp = 0, φh1h2 = ±π/2 become clearly elliptic in shape.
The κ distribution begins to take on lower values until it averages approximately 1.0 at
20× 20 bins. At higher granularities the average κ drops below 1. In these cases we note
many regions of statistical fluctuation in those regions where we expect the acceptance
to vary smoothly. We take this as evidence that the bin schema is too granular and the
statistical error on the bins is beginning to dominate over the genuine efficiency structure.

In this case an analyst would probably, by eye, consider 20 × 20 to be the optimal
binning of all those examined - although the reader may come to different conclusions
given the subjectivity of judging shapes in this fashion. The 20× 20 binning schema is the
binning with a mean κ value of the schema closest to one. We take this as some indication
that our ansatz of ideal mean κ in a uniform distribution is somewhat well motivated.

A.2 Concluding remarks

It is perhaps worth repeating why examinations of κ are so useful for our re-weightings.
While examining 2D efficiency distributions by eye, one could broadly come to a similar
conclusion - that 20× 20 bins is probably the most suitable, or at least among the most
suitable, of the granularities considered. This would be very impractical in the case of
greater binning dimensionalities than 2, where visualisation with the human brain becomes
impractical - this is certainly so in the case of 5D. The κ distributions give us the means
to broadly quantify how well suited a multi-dimensional schema is given the statistics at
hand. It also enables, by looking at the shape of the κ distribution, an estimation of the
fraction of the variable space which is too coarsely binned and the fraction which is too
finely binned. Naturally an adaptive algorithm could exploit this more capably in higher
dimensions than manually setting the bin limits.
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Figure A.1: The κ distributions for the cases of efficiency binnings which are too coarse, (a), and
too granular, (b).
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Figure A.2: The SL Λ+
c → pK−π+ stripping efficiency for cosφp vs. φh1h2 and the corresponding

κ distributions for 5× 5, 10× 10 and 20× 20 binning granularities.
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Figure A.3: The SL Λ+
c → pK−π+ stripping efficiency for cosφp vs. φh1h2 and the corresponding

κ distributions for 30× 30 and 40× 40 binning granularities.
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Appendix B

Biases in efficiency re-weightings from
limited simulated/calibration statistics

B.1 Stripping efficiency correction

A very crude description of the stripping efficiency re-weighting in our analyses is as
follows:

1. The stripping selection is applied to the data candidates.

2. Samples of simulated signal decays are generated for each mode.

3. A version of the stripping selection with no PID cuts is applied to the simulated
candidates.

4. The total number of truth matched candidates which survive the selection over the
total number of simulated candidates is taken as the phase-space averaged stripping
efficiency.

5. The poor modelling of the Λ+
c decay resonant variables in the MC, and the dependence

of the selection efficiency on said variables, necessitates that we bin the MC in these
variables to construct schemas of local stripping efficiencies in the variable space.

6. These efficiencies are then used to assign per-candidate efficiencies to the data
candidates dependent on their position in the variable space.

As to what binnings of the simulated data should be utilised, we are in part motivated
by a form of statistical bias which appears in this form of re-weighting procedure. This
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appendix motivates this bias and contains investigations into its magnitude in the stripping
efficiency re-weighting procedure, and in the use of the fully data-driven PIDCalib method.
This is accomplished with toy simulation experiments.

B.2 Source of bias

While conducting the stripping efficiency re-weighting in the analysis, the candidate
noted a disturbing trend: that generally, as the number of bins in our efficiency schemas
increased, that the extracted per-mode re-weighted efficiencies generally became lower.
At first this was attributed to genuine efficiency structures, but it became clear that no
matter the re-weighted variables, that the extracted efficiencies became lower - even when
the re-weighting variables were known to have a very weak dependence on the stripping
selection.

After some consideration, the nature of this bias was understood; its origins are
purely statistical in nature, and not pertaining to the efficiency structures or features
of the resonant structure of Λ+

c → phh′ decays. The ultimate effect is that when using
a sample of data to derive local, binned efficiencies for some arbitrary selection, higher
binning granularities in the schema result in higher adjusted yields being derived when
said efficiency schema is used to assign event-by-event weights to another data sample.
This is an effect of the inflation of binomial uncertainty on the bin efficiencies that is
implicit with higher granularity.

This bias is easily illustrated when we consider the implications of finite MC statistics.
Each bin in the schema will have a calculated efficiency and error. We posit that there is
some “true” efficiency value for each bin. Through statistical fluctuations, some calculated
efficiencies are above and below the true value. Roughly equal numbers of bins will
fluctuate above and below their true values. It can be shown that when the efficiency
schema is used to re-weight another dataset, contributions from candidates falling in bins
with efficiency fluctuations downwards from the true value are given higher weight than
those candidates falling in bins with efficiency fluctuations upwards from the true value.

In a phase-space integrated approach, all events are assigned the average efficiency and
the adjusted yield is then simply

M =
N

ε
. (B.1)

To illustrate the bias we consider binning the MC in some control variable x on which the
efficiency does not depend. If x is uniformly distributed in the simulation, each bin will have
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roughly the same efficiency and binomial error on said efficiency. Statistical fluctuations
will result in a Gaussian distribution of bin efficiencies, with a width approximately equal
to the average binomial error. By construction, approximately equal numbers of bins have
efficiencies with upward fluctuations from the integrated efficiency value as downward
fluctuations.

We then use these binned efficiencies to assign per-candidate efficiencies to the data,
extracting the adjusted yield M by summing over the bins:

M =
∑
j

Nj

εj
(B.2)

where Nj is the number of data candidates in bin j. The ratio of the number of data
candidates passing selection over the adjusted yield gives the re-weighted efficiency ε̄:

ε̄ =
N

M
(B.3)

With a uniform reference sample in x, there will be roughly Gaussian distributed
per-candidate efficiencies assigned to the data sample. So for one set of candidates Nj−

falling in bins with efficiency fluctuation y below the average effective efficiency, there is a
roughly equal number of candidates Nj+ falling in bins with efficiency fluctuation y above
the average. With uniform distributions in x, Nj− = Nj+ = 2Nj. Under a phase-space
averaged treatment these data candidates are assigned the adjusted yield:

M =
2Nj

ε
(B.4)

In the binned approach they are instead assigned the adjusted yield:

M =
Nj

ε+ y
+

Nj

ε− y

=
Nj(ε− y) +Nj(ε+ y)

(ε+ y)(ε− y)

=
2Njε

ε2 − y2

=
2Nj

ε− y2

ε

(B.5)

In the case of zero statistical fluctuations this reduces to the phase-space averaged adjusted
yield. For contributions from bins with non-zero fluctuation y, this always results in an
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adjusted yield which is larger. We will therefore always extract a re-weighted ε̄ which is
biased downwards.

Even when the x variable is some resonant variable on which the stripping efficiency
depends, we expect that some bin efficiencies will fluctuate above their “true” value and
some fluctuate down. We have demonstrated that contributions from downward fluctuating
efficiencies dominate over upwardly fluctuating efficiencies when the binomial uncertainties
on the bin efficiencies are high relative to the bin efficiencies. This is a downward bias in
the re-weighted efficiencies which is purely statistical in nature.

As can also be seen, the magnitude of this bias is determined by the factor y2

ε
. This

states that the larger the statistical fluctuations on the bin efficiencies relative to said
bin efficiencies, the larger the bias. This explains why as we increase the granularity of
our efficiencies we extract increasingly lower ε̄ values. While in this example we bin in a
variable uncorrelated with the selection efficiency, this effect is still present even when the
binning variable is correlated with efficiency.

B.3 Toy estimations

We demonstrate this effect using toy MC, by generating a simulated population of Nt

candidates. Let this distribution be known as the calibration sample - it is analogous
to the simulated data in our analysis. Each candidate is randomly assigned a value in a
control variable, x, which is uniformly distributed between 0 and 1. A random selection is
applied to this dataset, with a true efficiency εtrue. As such, the efficiency of the selection is
independent of the control variable x. We calculate the effective efficiency of the selection
by counting the number of candidates surviving the selection. We divide the sample into j
equal bins in x, and derive an effective efficiency for each bin, εj.

We generate a second sample of k events with the same uniform distribution in x. Let
this second sample be known as the re-weighting sample - it is analagous to the real data
in our analysis. We use the binned efficiencies constructed using the calibration data to
assign per-event efficiencies to the re-weighting sample. We then calculate the adjusted
yield for the re-weighting sample, and use this to extract the effective efficiency εRW. With
kj as the number of re-weighting events in bin j, the extracted yield M is then:

M =
∑
j

kj
εj

(B.6)
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and the extracted efficiency is then

εRW =
k

M
. (B.7)

This has applications in several of our efficiency corrections. The most relevant are in the
determinations of the re-weighted per-mode stripping efficiencies and in our MC evaluations
of the PIDCalib systematic uncertainties. We note that in the following sections there
will be some rounding errors from floating point operations.

B.3.1 PIDCalib

In the PID correction of the data, we possess sufficient calibration statistics to safely
avoid this bias. However, our evaluations of the systematic errors arising from variation in
efficiency use simulated calibration data - in the case of protons the statistics are much
lower, around 105. The selection efficiency is conservatively set at 0.1, and the number of
generated calibration events is 100000. We run the procedure described in the previous
section for a varying number of bins. The re-weighted efficiencies are shown in Table B.1.
Naturally, as the number of bins increases, the fractional binomial efficiency error increases,
and the width of the distribution of bin efficiencies becomes larger. This leads to larger
biases being introduced. Examples of the distributons of bin efficiencies for different
numbers of bins are given in Figure B.1. The magnitude of the bias in extracted efficiency
is plotted against the number of bins in the re-weighting in Figure B.2. At around the
level of 50 bins, our PIDCalib granularity, this bias is around half the binomial uncertainty
on the integrated efficiency. This is taken into account in our systematic error evaluations.

B.3.2 Prompt stripping efficiencies

We now make estimations of the biases in our stripping efficiency re-weightings - where
this bias becomes significant gives us a rough idea of the granularities we can safely attain
in our re-weighting schemas. We use the phase-space averaged efficiencies as a rough guide
to the typical magnitude on the bin efficiencies. The prompt modes have comparable
simulation statistics and comparable efficiencies. Using the prompt Λ+

c → pK−K+ as
an example, taking an efficiency of 2.5× 10−3 and a number of simulated candidates of
2.3×106. The re-weighted efficiencies are shown in Table B.2. Examples of the distributons
of bin efficiencies for different numbers of bins are given in Figure B.3. The magnitude of
the bias in extracted efficiency is plotted against the number of bins in the re-weighting in

205



Figure B.4.
As can be seen, severe biases manifest at much lower granularities due to the low

efficiency of the prompt selections. In order to suppress the bias, we posit that the
granularity should not exceed the threshold whereby the bias is greater than the binomial
uncertainty on the efficiency of the integrated sample. This seems to indicate that in the
case of the prompt sample our schemas should not exceed 80 bins - a far lower granularity
upper limit than was previously expected.

B.3.3 SL Cabibbo-suppressed stripping efficiencies

For each of the SL Cabbibo suppressed modes, there are around 106 simulated candidates,
with phase-space averaged efficiencies of around 2.5 %. We take the least efficient of these,
the SL Λ+

c → pπ−π+, as a conservative example. Now the efficiency in the toy model is
2.3 %, and the number of generated candidates 1m. The re-weighted efficiencies are shown
in Table B.3. Examples of the distributons of bin efficiencies for different numbers of
bins are given in Figure B.5. The magnitude of the bias in extracted efficiency is plotted
against the number of bins in the re-weighting in Figure B.6.

In this case, the bias approaches the magnitude of the binomial uncertainty on the
integrated sample at around 120 bins. We take this as an upper limit on our binning
granularities for the SL Cabibbo-suppressed modes.

B.3.4 SL Λ+
c → pK−π+ stripping efficiencies

We have considerably higher simulation statstics for this mode. Now the efficiency is
taken as 1.1 %, and the total number of generated candidates is 106. The re-weighted
efficiencies are shown in Table B.3. Examples of the distributons of bin efficiencies for
different numbers of bins are given in Figure B.7. The magnitude of the bias in extracted
efficiency is plotted against the number of bins in the re-weighting in Figure B.6.

In this case, the bias appraoches the size of the binomial uncertainty on the efficiency
of the integrated sample at around 300 bins - we take this as the granularity limit in this
case.
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B.4 Summary

We identify a bias that appears when data candidates are assigned per-candidate efficiencies
using a simulated sample of candidates with finite statistics. We motivate this bias by
considering the effects of statistical fluctuations on bin efficiencies due to finite MC statistics
on the extracted adjusted yields of data distributions. We conclude that this bias will be
negligible in the case of our use of PIDCalib, and derive maximum limits on the numbers
of bins to be used in the stripping efficiency re-weighting bin schemas, as indicated by our
investigations using toy MC.
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Table B.1: The extracted efficiencies for a variety of binning schemas. In this example, εtrue = 10%,
Nt = 100000, εave = 9.94 ± 0.09%. εRW refers to the re-weighted efficiency, εave refers to the
integrated efficiency, and the “Bias” in the final column is the fractional change in re-weighted
efficiency compared to the average efficiency in percent, or (|εave − εRW| /εave) ∗ 100.

N Bins εRW[%] |εRW − εave|% Average bin σε % Bias [%]
10 9.92 0.01 0.30 0.15
25 9.91 0.03 0.47 0.26
50 9.89 0.05 0.67 0.46
100 9.84 0.10 0.95 0.97
200 9.73 0.21 1.34 2.13
300 9.66 0.28 1.64 2.77
400 9.55 0.39 1.89 3.94
500 9.41 0.53 2.12 5.32
600 9.33 0.61 2.32 6.14
700 9.11 0.83 2.50 8.33
800 9.08 0.86 2.68 8.65
900 8.91 1.02 2.84 10.31
1000 8.80 1.14 2.99 11.45

∈Bin 

0.08 0.1 0.12

B
in

s
 p

e
r 

0
.0

0
4

9
3

5

0

2

4

6

8

10

12

14

16

18

20

22

24

(a)

∈Bin 

0.05 0.1 0.15 0.2

B
in

s
 p

e
r 

0
.0

0
1

0
7

7

0

5

10

15

20

25

30

(b)

Figure B.1: The bin efficiency distributions distributions for 50 bins (a) and 1000 bins (b).
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Figure B.2: The efficiency bias versus number of bins for the PIDCalib systematic evaluation.
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Figure B.3: The prompt stripping bin efficiency distributions distributions for 50 bins (a) and
200 bins (b).
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Table B.2: The extracted efficiencies for a variety of binning schemas. In this example, εtrue =0.25%,
Nt = 100000, εave = 0.251± 0.003%. εRW refers to the re-weighted efficiency, εave refers to the
integrated efficiency, and the “Bias” in the final column is the fractional change in re-weighted
efficiency compared to the average efficiency in percent, or (|εave − εRW| /εave) ∗ 100.

N Bins εRW [%] |εRW − εave|[%] Average bin σε[%] Fractional bias on ε [%]
10 0.25071 0.00024 0.01043 0.09664
20 0.25031 0.00065 0.01475 0.25708
30 0.24993 0.00103 0.01807 0.40895
40 0.24980 0.00116 0.02087 0.46146
50 0.24937 0.00158 0.02333 0.63023
60 0.24853 0.00243 0.02555 0.96692
70 0.24855 0.00241 0.02760 0.95948
80 0.24799 0.00296 0.02951 1.18129
90 0.24751 0.00345 0.03130 1.37493
100 0.24668 0.00428 0.03299 1.70358
120 0.24714 0.00381 0.03614 1.51964
240 0.24301 0.00794 0.05111 3.16494
160 0.24485 0.00611 0.04173 2.43493
180 0.24397 0.00699 0.04426 2.78447
200 0.24399 0.00697 0.04666 2.77587
250 0.24106 0.00989 0.05216 3.94184
300 0.24010 0.01086 0.05714 4.32571
400 0.23383 0.01713 0.06598 6.82564
500 0.22644 0.02451 0.07377 9.76844
600 0.22424 0.02671 0.08081 10.64506
700 0.21283 0.03812 0.08728 15.19186
800 0.21104 0.03992 0.09331 15.90675
900 0.20150 0.04946 0.09897 19.70693
1000 0.20602 0.04494 0.10433 17.90618
1500 0.19493 0.05603 0.12777 22.32690
2000 0.19439 0.05656 0.14754 22.53896
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Figure B.4: The efficiency bias versus number of bins for the prompt stripping efficiency re-
weighting.
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Figure B.5: The SL CS stripping bin efficiency distributions distributions for 50 bins (a) and 200
bins (b).
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Table B.3: The extracted efficiencies for a variety of binning schemas. In this example, εtrue = 2.3%,
Nt = 1000000, εave = 2.284± 0.015%. εRW refers to the re-weighted efficiency, εave refers to the
integrated efficiency, and the “Bias” in the final column is the fractional change in re-weighted
efficiency compared to the average efficiency in percent, or (|εave − εRW| /εave) ∗ 100.

N Bins εRW [%] |εRW − εave|[%] Average bin σε[%] Fractional bias on ε [%]
10 2.28249 0.00091 0.04724 0.03977
20 2.28181 0.00159 0.06680 0.06945
30 2.27954 0.00386 0.08182 0.16908
40 2.27775 0.00565 0.09447 0.24751
50 2.27867 0.00473 0.10562 0.20720
60 2.27569 0.00771 0.11570 0.33774
70 2.27283 0.01057 0.12498 0.46293
80 2.27341 0.00999 0.13360 0.43738
90 2.27406 0.00934 0.14171 0.40919
100 2.26873 0.01467 0.14937 0.64255
120 2.26997 0.01343 0.16363 0.58795
240 2.25765 0.02575 0.23141 1.12788
160 2.26496 0.01844 0.18894 0.80764
180 2.26368 0.01972 0.20041 0.86354
200 2.26161 0.02179 0.21125 0.95427
250 2.25681 0.02659 0.23618 1.16451
300 2.25153 0.03187 0.25872 1.39569
400 2.24260 0.04080 0.29875 1.78701
500 2.23096 0.05244 0.33401 2.29640
600 2.22359 0.05981 0.36589 2.61912
700 2.20935 0.07405 0.39521 3.24313
800 2.20159 0.08181 0.42249 3.58285
900 2.18692 0.09648 0.44812 4.22531
1000 2.17322 0.11018 0.47236 4.82505
1500 2.12974 0.15366 0.57852 6.72955
2000 2.05782 0.22558 0.66802 9.87900
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Figure B.6: The efficiency bias versus number of bins for the SL CS stripping efficiency re-weighting.
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Figure B.7: The SL Λ+
c → pK−π+ stripping bin efficiency distributions distributions for 50 bins

(a) and 200 bins (b).
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Table B.4: The extracted efficiencies for a variety of binning schemas. In this example, εtrue = 1.1%,
Nt = 106, εave = 1.096 ± 0.003%. εRW refers to the re-weighted efficiency, εave refers to the
integrated efficiency, and the “Bias” in the final column is the fractional change in re-weighted
efficiency compared to the average efficiency in percent, or (|εave − εRW| /εave) ∗ 100.

N Bins εRW [%] |εRW − εave|[%] Average bin σε[%] Fractional bias on ε [%]
10 1.09596 0.00007 0.01041 0.00662
20 1.09578 0.00025 0.01472 0.02302
30 1.09575 0.00028 0.01803 0.02575
40 1.09562 0.00041 0.02082 0.03764
50 1.09552 0.00051 0.02328 0.04647
60 1.09535 0.00068 0.02550 0.06221
70 1.09533 0.00070 0.02755 0.06344
80 1.09503 0.00100 0.02945 0.09093
90 1.09484 0.00119 0.03123 0.10839
100 1.09478 0.00125 0.03292 0.11397
120 1.09440 0.00163 0.03607 0.14901
240 1.09319 0.00284 0.05101 0.25884
160 1.09412 0.00191 0.04165 0.17384
180 1.09385 0.00218 0.04417 0.19897
200 1.09396 0.00207 0.04656 0.18932
250 1.09361 0.00242 0.05206 0.22118
300 1.09286 0.00317 0.05703 0.28954
400 1.09216 0.00387 0.06585 0.35354
500 1.09088 0.00515 0.07362 0.47019
600 1.08971 0.00632 0.08065 0.57664
700 1.08886 0.00717 0.08711 0.65373
800 1.08824 0.00779 0.09312 0.71088
900 1.08647 0.00956 0.09877 0.87251
1000 1.08627 0.00976 0.10412 0.89025
1500 1.08022 0.01581 0.12752 1.44272
2000 1.07646 0.01957 0.14724 1.78528
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