Procedures for running the TELL1 in the lab

Data sampling

When we’re running with the TELL1, we can choose how many samples we take with each trigger. By taking 5 samples (spaced by the 25ns clock period), and repeating the experiment 5 times with different fine-tuning of the sample time, we can map out the pulse shape from the Beetle’s front end with 5ns resolution. If we already know when the peak of the pulse occurs, we can just take 1 sample at the peak. These two modes are described below. 

5-sample mode

Setting up the equipment

Connect TELL1 to power supply.

Switch NIM crate on.

Power supply to repeater board on (+/- 5.5V, 3.5V, 0V).

Switch pattern generator on, and then switch on outputs 1 and “inverted 2”. Output 1 should be producing a 25ns period clock signal, with TTL levels (+3.3V, 0V). “Inverted 2” should produce a 5ns-wide window once every 25ns, using NIM levels (-800mV, 0V), which will be used for the trigger acceptance window. Note that the pulse generator keeps its memory when switched off, so it should already be set up correctly. 

SETUP OF 5NS ACCEPTANCE WINDOW: As described in the hardware guide, the timing of the 5ns-wide window, relative to the clock signal, determines exactly when we sample the pulse from the Beetle front end. If we want to measure the full pulse shape with 5ns resolution, we need to do 5 runs, with the phase of the window set to 0ns, 5ns, 10ns, 15ns, 20ns.
Source, detector and photomultiplier should be positioned correctly!
Power supply to photomultiplier on (11V).

Detector high voltage supply on. This will be one of the quad bias supplies on the crate. When altering the setup, make sure the polarity of the bias supply is correct! The voltage can be adjusted with a screwdriver.
Timing: 
You may have to adjust the timing of the 5ns acceptance window, depending on what you want to measure.

The length of the dual timer’s output signal should be set to 125ns, so that we will trigger for 5*25ns clock cycles.

Also, to ensure the trigger signal is produced at the correct time, the delay unit in the NIM crate should be chosen as follows:

Delay unit (ns) = 42ns – Window delay

(NB – This delay is affected by the cable length you’re using – these figures are for cables long enough to use the environment chamber. In general, the crucial cable delays are the delay for the clock going from the pattern generator to the TELL1, and the difference in delay time for the acceptance window and the PMT signal reaching the logic unit. These delays determine the sample time relative to the clock, and should be kept constant during a set of experiments. Delays occurring later on in the trigger generation process are less crucial – we just have to make sure the trigger signal occurs in the correct 25ns time bin, and we can do this with the delay unit settings.)

Note that most delay unit settings will work fine – the value given above is one that I know works reliably.

Controlling and configuring TELL1

Login to ccpc using 

ssh cc@pctell27 (password is tell1user)

Go to folder containing config files:

cd tell1lib_release_v2.0/ccpc_daq

Configure beetle chips. The following config files should have the correct settings:
cfg_tell1 3DIntTFC_Addr16_source_newset.cfg

cfg_tell1 3DIntTFC_Addr18_source_newset.cfg

cfg_tell1 3DIntTFC_Addr20_source_newset.cfg

(Note – as you configure each chip, the current drawn by the 3.5V power supply to repeater board should increase. The particular choice of config file depends on exactly what setup you’re using.)

Configure the TELL1

cfg_tell1 3DExtTFC_NoModConf_alt.cfg

Running Event Builder

Assuming you’ve got the Event Builder:

In a new window, go to folder with LHCb software (probably named cmtuser)

Set up software:

source afterReboot.sh

source newShell.sh

Currently, we should be in Online_v3r5/Online/OnlineTasks/v1r5/cmt/

Need to change an options file to choose the output file:

emacs ../options/DiskWR.opts &

The Writer.Connection option sets the output file path.

Then, the event builder can be started with

source runEBuild.sh

When the event builder starts up, a lot of windows open up.

MBMMon@pcfreiburg window is the one to look at – it shows you the number of samples that have been received from the TELL1. 

To stop the data acquisition:

killall Gaudi.exe

Decoding with Vetra

Assuming you’ve set up Vetra:

In a new window, go to the folder with LHCb software:

source vetrasetup.sh

This should take you to the folder

/home/whoever/cmtuser/Vetra_v5r0/Velo/Vetra/v5r0/cmt

Then, open the options file

emacs ../options/VetraTELL1NZSsource.opts

In this file, there are clearly-labelled sections where you should put the name of the input *.dat file, and the names of the output *.root histogram and N-tuple files. Generally, I’ve given the root files the same name as the input, but with .dat changed to .root and either “Hist_” or “NTuple” added to the start.

There are also a couple of other files you might have to alter.

Firstly, ../options/TELL1Checkers.opts has various options relating to the output files. The most important options are ModuleNumber and DetectorNumber. With a source test, we will only be getting useful data from one detector at a time. However, since we can connect up to 4 modules, with 4 detectors each, we need to tell Vetra which detector contains the useful data. The numbering runs from 0-3. At the moment, the top data input on the TELL1 corresponds to module 0. Then, on the modules we’re using, 

Additionally, the nSamples values should be set to match the number of samples you took with each trigger. This makes it more convenient to work out exactly when each sample was taken.

Secondly, ../options/TELL1Emulator.opts allows you to change the settings of the cluster maker (thresholds etc.).

Then, to run Vetra from the cmt folder, type:

../slc4_ia32_gcc34/Vetra.exe ../options/VetraTELL1NZS.opts

Sorting the files

Last but not least, when we take 5 consecutive samples from the TELL1 they won’t necessarily arrive in the output file in the right order. A script is needed to do this re-ordering, and also add useful information such as flagging bad strips.

Start root.

Loading: 

.L VetraSortSource_window.cpp++

This is the best script to use with the source data, where we will only be dealing with a single sensor at a time.

The function is defined as 

void sort(char rootFile[], int WindowDelay)

It takes the input file name, and also the “window delay”, i.e. the length of time after the clock edge that the 5ns trigger acceptance window arrives. It does the file re-ordering, and uses the window delay to work out the time that each sample was taken. The results are written to a new NTuple file, with a prefix added that can be set within the file. Within the script, it’s also possible to set the no. of samples associated with the trigger (if it’s not 5), and to provide an array containing the strip numbers of all the bad strips on the detector. These will be flagged with variable BadStrip==1, which means you can easily ignore them when working in ROOT.

Note that for a single file, we will only get samples taken at (say) 5ns, 30ns, 55ns, 80ns, 105ns etc, depending on the window delay settings. To get a full time spectrum, we need to take 5 runs with the window delay set to 0, 5, 10, 15, 20ns, then combine them.

Combining data files

To combine multiple data files with different timing, you need to first run the “sort” script above (to order them correctly and attach the time info) and then combine them with the script CombineFiles.cpp. This contains the function combine(). You specify the 5 original files, and the output file prefix. 4 different files are produced, for the LCMS Event/Hit trees and the Cluster Event/Hit trees. I have to admit that it’d be much better to write them to a single file – if you can work out how to do this, be my guest.

Improved pulse shape finding
This approach is good enough to find out how the cluster size varies with the timing, allowing us to find the peak of the pulse. However, it isn’t effective for finding effects like undershoot etc. So, to find the full pulse shape accurately, the process is a little more involved. See the section on ROOT scripts on the TWiki.
Single-sample mode

The description above explains how to use the test setup to take 5 samples (spaced by 25ns) every time there is a trigger. This is a useful part of getting the pulse shape from the detector. However, once you’ve found the correct timing, it can be useful to just do a single sample to catch the peak of the pulse; this reduces the amount of data recorded by a factor of 5, avoids potential problems with loss of samples, and potentially reduces crosstalk between consecutive samples.

The “single sample” mode should be used for doing the noise tests.

Experimentally, the best sample time for the 3D and planar modules with the current beetle settings is 50ns, which corresponds to the acceptance window being delayed by 20ns, and taking the 3rd sample out of the 5.

This requires a few changes in the setup.

1) Electronics. The length of the trigger pulse is set by the dual timer. To get 5 samples, it is set to be 125ns long. To use a single sample, turn the dual timer to its min value. This is still a bit longer than the 25ns we’d ideally want, but it still works reliably.

2) Setting the delay. With the 5 sample test, we used Delay unit (ns) = 47ns – Window delay. However, since our trigger length is a bit longer than the optimal 25ns, in single-sample mode we should use:


Delay unit (ns) = 39ns – Window delay (so, for the 20ns delay we want to get 
the peak, use 19ns. (NB – This delay is affected by the cable length you’re 
using – these figures are for cables long enough to use the environment 
chamber.)

3) Configuring the Beetles. We want to grab the 3rd sample out of the 5 that we previously would have taken. So, this involves altering the latency a little from 13 hex (19) to 11 hex (17). This means that we grab the sample taken “17 clock cycles ago” rather than “19 clock cycles ago”, so we get the later sample.


The appropriate config files are:


cfg_tell1 3DIntTFC_Addr16_source_single_newset.cfg


cfg_tell1 3DIntTFC_Addr18_source_single_newset.cfg


cfg_tell1 3DIntTFC_Addr20_source_single_newset.cfg


cfg_tell1 3DExtTFC_NoModConf_alt.cfg

4) Decoding in Vetra. In the options/TELL1Checkers file, there is an option to specify the number of samples you’ve taken with each trigger. This should be switched from 5 to 1.


VeloLCMSMoni.nSamples=1; 


VeloClusterMoni.nSamples=1; 

5) 
Finally, the script to “sort” the file becomes very basic – it just adds in the bad 
strip flags, hitID etc. 


VetraSortSource_single.cpp


As arguments, give the name of the NTuple (as before) and the sample time 
(50ns, probably).

Noise tests
Noise tests are simpler to run. The MIP source and the trigger are not needed – instead, we just use the CCPC to automatically trigger the detector.
You can follow the procedure for the single-sample mode or the 5-sample mode, ignoring the parts that deal with the trigger logic and the source setup. Then, when you use the CCPC, load the individual Beetle configuration files as before, but the TELL1 configuration file should be:
3DIntTFC_NoModConf_alt.cfg
This tells it to ignore the external trigger.

Then, start the Event Builder as described above. Then, go to the window where you’ve connected to the ccpc, and type:
console_tell1

This will bring up a control menu. From this menu, choose:
C – Control

1 – Send ECS trigger

This will then ask you for no. of triggers (5000 or so should give good statistics), no of consecutive triggers (any number up to 5 will work, 1 probably best) and delay between triggers. This last one should be set high, to prevent problems with events piling up in the TELL1’s memory – if you enter 10,000,000,000 then the max possible time will be used. Even with the maximum delay, the test is still very fast.

Data analysis in ROOT

Even after running the setup, we need to analyse the results using ROOT. On the TWiki, I’ve added a section with useful scripts.

