Vetra Guide

In the Velo at the LHCb experiment, the TELL1 readout board /cite{HAEFELI2004} will perform data processing on the data from the Velo’s strip detectors, before reading out the data to a computer network.

In our MIP test setup, the TELL1 does not process the data. Instead, we write all the raw data from the strip detector to a file on the PC. Then, the file is decoded and processed using a piece of LHCb software called Vetra. The main purpose of Vetra is to emulate all the data processing algorithms that will eventually run on the TELL1’s firmware; this particular version of Vetra is modified to work with our lab MIP tests. Like the rest of the TELL1-related software, this runs in Linux.
Vetra and LHCb software
Like the Event Builder, Vetra uses LHCb’s software framework /cite{CORTI2006}. This in turn is part of the Gaudi software framework: http://proj-gaudi.web.cern.ch/proj-gaudi/
Basically, these software frameworks provide various functions to the software, and also specify how different pieces of the software system should interface. So, the internal behaviour of each piece of LHCb software can be developed reasonably independently without causing problems for the other parts.

The software is divided up into projects. Vetra is one project. Within each project, there are then various packages, which carry out more specific functions – for example, Vetra has a package VeloTELL1Checkers which is responsible for writing the output files. In order to run Vetra, we need to have the general Vetra project code installed somewhere on the Glasgow network, and each user also has to have their own copies of certain packages which have been customised to work with the lab test setup.

There is also a system called CMT (Configuration Management Tool) which controls the configuration of the software – for example, it keeps track of all the code files required by each program, so that the code can be compiled successfully.
Setting up Vetra
As mentioned above, it is necessary to have the general Vetra project code available somewhere on the group network, a copy of the customised Vetra packages in your own home space, and finally cmt must be used to set up the software.
The general Vetra project code is currently set up on ppepc28 in the lab, in the folder /pcdisk/ppepc28/lhcb32. So, if you’re using this computer (either directly or ssh’ing from elsewhere) this is already set up. If you’re setting up the TELL1 to work with a different computer, then you need to follow the instructions at http://lhcb-comp.web.cern.ch/lhcb-comp/Support/html/NEW_Install.htm. Install VETRA v5r0.
Assuming this is OK, you need to do the following.

If you don’t already have a folder to store LHCb software, then create one. The standard name is cmtuser, though you can choose your own. Navigate to this folder.

Copy the file Vetra_v5r0_whatever.tgz to this folder, and unpack it by typing
tar –xzvf Vetra_v5r0_whatever.tgz.

Then, copy the script lhcbsetup.sh into this folder. This script sets up various environment variables used by the lhcb software. Most of it can be left unchanged, but some lines relate to the local setup. These are:

export MYSITEROOT=/pcdisk/ppepc28/lhcb32 -- Location of LHCb projects. If you’re working on ppepc28 in our lab, don’t change.
export User_release_area=/home/dpennica/cmtuser - This MUST be set to whatever you named the folder you’re currently using
Use the “vetrasetup.sh” script:
source vetrasetup.sh

This will first use the “lhcbsoft.sh” script to set up the general lhcb software, apply more specific environment settings for running Vetra, and move you to the folder Vetra_v5r0Velo/Vetra/v5r0/cmt/.

In future, in order to set up Vetra, you only need to source vetrasetup.sh. However, since this is the first time using Vetra, you need to recompile the code. (If you change the Vetra code yourself, you also need to type the following.)

cmt br cmt config

cmt br source ./setup.sh

cmt br gmake

This will tell CMT to prepare to compile the code, and then compile it. The “cmt br” part makes sure that this will be applied to all the code packages Vetra uses.

Using Vetra
Once you’ve set up Vetra, each time you begin using it you need to run this script.
source ./vetrasetup.sh
After running this, you will be in the cmt folder. The cmt folder is within Vetra_v5r0Velo/Vetra/v5r0. This folder also contains slc4_ia32_gcc34, which contains the actual Vetra code, and options, which contains various .opts files. When running Vetra, you need to call on the Vetra executable, and provide it with a suitable .opts file. So, if you’re in the cmt folder, you’d type:

../slc4_ia32_gcc34/Vetra.exe ../options/VetraTELL1NZS.opts

VetraTELL1NZS.opts is a file which uses the standard options for running with the lab setup. It’s possible to copy the file under a new name, then use this new file.

Look at VetraTELL1NZS.opts. The main important aspects are as follows:

/// SET THE OUTPUT HISTOGRAM FILE

HistogramPersistencySvc.OutputFile = "FILE1 DATAFILE='file:///home/dpennica/vetratest/CNM3D/MIP_withFIR/Hist_CNM3D_MIP_newcable_15V_50ns_withFIR.root" ;

This allows you to choose the name and location of the output file containing histograms giving basic information.

/// SET THE OUTPUT NTUPLE FILE

NTupleSvc.Output = { "FILE1 DATAFILE='file:///home/dpennica/vetratest/CNM3D/MIP_withFIR/NTuple_CNM3D_MIP_newcable_15V_50ns_withFIR.root' OPT='NEW'" };
This chooses the name and location of the N-tuple output file, containing event-by-event information.
// EVENT PROCCESSING SETTINGS

// No of events to process: set to -1 for all events

ApplicationMgr.EvtMax = -1;

// to skip some events

//EventSelector.FirstEvent = 5100;

// printing freq

EventSelector.PrintFreq = 100;

This chooses how many events we want to process (-1 to process them all). If this number exceeds the number of events in the file, then it just processes the entire file. The EventSelector.FirstEvent also gives you the option to skip some of the first samples (uncomment it to do this). The PrintFreq sets how often we give log information when running Vetra – 100 or so gives a reasonable view of the progress without slowing the processing down.
/// SET THE INPUT FILE

"DATAFILE='file:////pcdisk/ppepc28/sourcetest/CNM3D/MIP_withFIR/CNM3D_MIP_newcable_15V_50ns.dat' SVC='LHCb::MDFSelector'"

Choose the input file.

As well as these commands, this file also calls on two other options files in the same folder: TELL1Emulator.opts and TELL1Checkers.opts. These give more detailed control over the data processing applied to the data (Emulator) and the output produced (Checkers), as described below.

Log information when running Vetra
When Vetra runs, it prints log information to the screen. The level of information can be chosen by setting the “output level” at the start of the options file:
// Option file for main application for VeloTELL1 emulation package Vetra

// Output level (2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL)

MessageSvc.OutputLevel = 4;

In the code, commands to produce output information are labelled with DEBUG, INFO etc. Only the commands at the level specified and above will be shown. For example, setting it to 3 will give INFO, WARNING etc. statements but not DEBUG.

As well as this global setting, it’s possible to specify this OutputLevel for specific parts of the program, as shown below. This can be useful for checking the behaviour of a specific function without being deluged by output.

TELL1BinaryOutputChecker.OutputLevel=4;

VeloTELL1Reordering.OutputLevel=4;

VeloClusterizationAdaptor.OutputLevel=3;

VeloClusterMoni.OutputLevel=1;

Finally, the log output can be redirected into a file using standard Linux commands, which can make it more convenient to read:

../slc4_ia32_gcc34/Vetra.exe ../options/VetraTELL1NZS.opts > VetraLog.txt

Technical issues – TELL1 and Vetra
Strip numbering
Each TELL1 is designed to read out 16 Beetle chips. The TELL1 has 4 ADC cards, each of which can read out 4 up to 4 Beetles. The detector modules made at Glasgow only hold 3 Beetles, however. Each module has a data cable leading to one of the ADC cards on the TELL1.

In the TELL1’s output, the data is stored as a set of 2048 strips. Each block of 512 strips contains data from a single module. In Vetra, the data is padded out with blocks of 64 dummy strips between the modules. So, the data on strips 0-511 comes from the module connected to the topmost ADC card, 576-1087 from the second module, then 1152-1664, 1728-2240.

To look at the first module (most often used), the relationship between strip numbering, Beetle number and module position is:

Strips 0-127

Beetle no. 20

Leftmost sensor

Strips 128-255

No beetle

Strips 256-383

Beetle no. 16

Rightmost sensor

Strips 383-511

Beetle no. 18

Central sensor
Header interference
When it comes to actually reading out the data, the data from each Beetle is sent along 4 sets of twisted-pair wires, with each pair carrying a differential signal. Each of these analogue links carries data from 32 strips.

When reading out the data from one event, each of these links serially carries 4 “header” bits of data containing information like the pipeline column number, followed by the 32 analogue values from the strips. Unfortunately, these 4 header bits have relatively high signal amplitude, and this affects the signal seen on the first piece of strip data. Since the header bits themselves aren’t stored, we can’t use the FIR filter to compensate for it, either. (In LHCb, the FIR filter will be implemented in the TELL1’s firmware, and should be applied to the header bits correctly.) In this version of Vetra, parts of the code such as clustering are designed to deliberately ignore the first strip or two out of each block of 32, since the header interference makes them extremely noisy.
Consecutive samples
It can be useful to take 5 or so samples every time the PMT is triggered, in order to map out the full shape of the front-end pulse. However, if we take multiple samples from each trigger, they often don’t end up in the .dat output file in the correct order. I’m not 100% sure whether this is due to the Beetle or the TELL1, but in the LHCb experiment the ordering of samples is unimportant (provided we can distinguish reliably between one event and another) so this isn’t too big a surprise.
Fortunately, each event comes tagged with a “BunchCounter” number. This is a 12-bit number (0-4095) which is stored on the Beetle chip, and increments every clock cycle, looping back to zero after 4095. We can get the correct ordering of each set of 5 samples by looking at the bunch counter numbers. This effectively requires two “passes” over the data (one to look at the numbers, then one to reorder the samples) which Vetra isn’t suited to doing because it works event-by-event. So, Vetra tags each sample with a trigger number and the bunch counter number, and then we sort out the ordering afterwards using a ROOT script. This is described in more detail later.
Data processing and output in Vetra
Look at the TELL1Emulator.opts and TELL1Checkers.opts files. They begin as follows:

TELL1Emulator.opts
EmulatorVELOSeq.Members += {

 "VeloTELL1EmulatorInit"

 ,"dataTranslator"

 ,"VeloTELL1FIRFilter"

 ,"VeloTELL1PedestalSubtractor"

 ,"VeloTELL1Reordering"

 ,"VeloTELL1LCMS"

 ,"VeloClusterizationAdaptor" // added from Tomasz

 ,"VeloClusterMaker" // added from VeloAlgorithms

 };
TELL1Checkers.opts

MoniVELOSeq.Members += {

 //"VeloTELL1ADCReader"

 //,"VeloTELL1ErrorBankReader",

 //,"VeloPedestalSubtractorMoni"

 //,"VeloChannelReordererMoni",

 "VeloLCMSMoni"

 ,"VeloClusterMoni" // from VeloAlgorithms

};

When we process the raw ADC data, it passes through the processing stages listed in TELL1Emulator.opts. Then, output can be produced from some of these processing stages, using TELL1Checkers.opts. For example, in the above setup we’ve commented out all the checkers, apart from the output after the LCMS stage and the clusterization.

Information on the processing steps can be found (for example) in /cite{HAEFELI2004}.

The main steps involved in the processing are:

FIR filtering – Compensates for the imperfect data transmission from the Beetle chip to the TELL1

Pedestal subtraction – Ensures that the “zero level” of each strip is set correctly, by taking the average signal level from the previous events and subtracting it.
Reordering – Normally has no effect, but can be used to re-order the strips if they are connected to the Beetle in the wrong order (e.g. due to a problem with wire bonding).

Linear Common-Mode Supression (LCMS) – This removes “common-mode” noise signals appearing simultaneously on multiple strips, by applying a linear fit to each block of 32 strips in each event and then subtracting this fit. (The code is designed to ignore real hits when finding this fit.)
Clusterization – Grouping together hit signals on adjacent strips into clusters if charge-sharing between strips has occurred.

Within the TELL1Emulator and TELL1Checkers files, there are various “options” which control these stages. Below, the processing is described in more detail, and the settings explained.
Output files
When processing a single event, at each stage in the processing the program is working with the signal values on each of the 2048 strips in a full TELL1. (The exception is the Clustering algorithm, where the output is a list of clusters.) In principle it’d be possible to write all of these strip signals to an output file, but in practice this means we’d have an excessive amount of data to deal with.

Instead, the output data is written as histogram and N-Tuple files. The histogram displays signal value versus the strip number. When we process each event, the signal values on the strips are added to the appropriate histogram bins. This gives us general information about the signals seen on the strips, but not event-by-event data. The histogram is useful as a basic check of performance (working out if we see signal or not, or if the behaviour varies from strip to strip), and is also useful for noise runs.

The N-Tuple file contains event-by-event information, but only from strips which meet certain criteria – typically, the signal must exceed a threshold. In the Cluster monitor, it is basically a list of the clusters. For each Checker stage that we’re running, we produce two ROOT trees within the n-tuple file. Firstly, there is an Event tree, containing one entry for every event. It lists general information about the event, such as how many of the strips met the criteria to be included, and also gives us information to help us navigate the second tree, the Hit tree. The Hit tree contains one entry for every strip which met the criteria, and includes information such as the strip number and the signal size.
ADC Reader
TELL1Checkers.opts - "VeloTELL1ADCReader"
This “checkers” stage produces output data from the raw ADC values, before any processing. The ADC values are 10-bit, in the range 0-1023. This can be useful as a basic check of the data quality – for example, you can check that the “zero level” isn’t too far away from the expected value of 512.
The options are simple – the N-tuple will contain the value for every strip falling within a specified range. This means that if you’re only testing one sensor, or one module, you don’t need to deal with the values on all 2048 strips.

// ADC READER - SET THE RANGE OF STRIPS WE WANT TO WRITE RAW ADC VALS FOR

VeloTELL1ADCReader.MinChannel=384;

VeloTELL1ADCReader.MaxChannel=511;
Details of n-tuple trees:

RawEvent:
Event – event number

BunchCounter – bunch counter – an internal value on the Beetle chip, which increments by 1 every clock cycle then loops back to zero after 4095.

nHits – Number of hit tree entries corresponding to this event
RawHit: Contains values from every strip falling within the range specified in the options. Strips with value 1023 are excluded – this indicates no data cable is connected.
Event
BunchCounter

FIR filtering

TELL1Emulator.opts - "VeloTELL1FIRFilter"

When a trigger signal occurs, each link of the data cable is used to serially read out the analog data from 32 strips on Beetle chip to the TELL1.

The data cable and repeater board do not perfectly preserve the signal levels. In particular, an “undershoot” effect occurs. If we have a large signal on one strip, followed by a signal around zero, then this will be represented during serial readout as a high voltage during one clock cycle then a low voltage in the next. However, when the serial signal goes from high to low, it will temporarily dip below the real zero level. This effectively produces a small false negative signal on the following strip.
FIR filtering seeks to compensate for this effect. For each strip, the output of the FIR filter is a weighted sum of the signals on the current strip (n) and the signals on the two previous strips (n-1, n-2):
f(n) = s(n).K0 + s(n-1).K1 + s(n-2).K2

Generally, K0 will be close to 1, and then K1 and K2 use small values to compensate for undershoot effects caused by the signal on the previous strips.

The FIR filtering is controlled in the emulator options file as follows. The first option switches the FIR on and off (putting the FIR “on” but using coefficients of 1, 0, 0 will have the same effect as switching it off). Then, you can set the coefficients. The current settings were chosen for the CERN data cable in the lab.
// FIR FILTER

// Set the coefficients. If we refer to the signal on strip n as s(n), then the output f(n) is:

// f(n) = s(n).K0 + s(n-1).K1 + s(n-2).K2

// Default setting has K0=1 and K1, K2=0, which will result in no change

VeloTELL1FIRFilter.FIRFiltering=true;

VeloTELL1FIRFilter.K0=0.855;

VeloTELL1FIRFilter.K1=0.145;

VeloTELL1FIRFilter.K2=0.0;

The appropriate FIR settings will vary depending on the readout cable used. A decent test of this is to do some test pulses, decode the data with FIR filtering off, and then see if any fake signals end up appearing in the strips next to where the real test pulse was delivered. Then, the FIR coefficients should be set to values that will minimise these fake signals.
[image: image1.emf]
There is no corresponding “Checkers” stage.
Pedestal subtraction

TELL1Emulator.opts - "VeloTELL1PedestalSubtractor"

// PEDESTAL

// Set global number of event that are needed to 'train' pedestal subtractor

/// Need to use at least 1024 to do pedestal following. If we are taking batches of N samples, it's sensible to choose a multiple of N. Generally, I've used 1100, with 5 samples per trigger.

VeloTELL1EmulatorInit.ConvergenceLimit=1100;
The Beetle chip can deal with both positive and negative polarity signals. When the signals are first ADC sampled (10-bit) we have a range of 0-1023, with values above about 512 corresponding to positive signals and those below 512 negative. However, the precise value of the zero level will vary from strip-to-strip, since the circuitry in each strip readout will not be perfectly identical. Likewise, the zero level may vary over time, for example as the module heats up during operation.

Vetra compensates for this by taking a running average of the signal on each strip, using the previous N events. This is subtracted from the signal. Since an invidual strip will only be hit by a particle in a small minority of events, the presence of these hits won’t really affect the running average if the Convergence Limit N is large enough. It must be set to at least 1024. If you’re taking samples from multiple time bins every time a hit occurs, then it’s helpful to make the convergence limit a multiple of this. Note that the first N samples will only be used to find the pedestal level, and won’t appear in the output file.

After the pedestal subtractor, the data is reduced from 10-bit to 8-bit to reduce the storage space required. It can take a range of values from -127 to +127. Now that the pedestal is removed, we can directly see the polarity of the signals.

TELL1Checkers.opts - "VeloPedestalSubtractorMoni"
This produces a histogram output of pedestal-subtracted signals versus channel number. The N-tuple output is similar to the ADC Reader output - we have an Event tree entry for each event, and a Hit tree entry for each piece of strip data (PedEvent, PedHit). However, after pedestal subtraction we can now apply a basic threshold, so that we only record the data from strips with a reasonable signal present.
// PEDESTAL SUBTRACTOR - SET THE NTUPLE THRESHOLD

VeloPedestalSubtractorMoni.HitThreshold=15;
NOTE – NOT CHANGED RECENTLY – NO NOTES IN VERSIONS.TXT – MAY NEED MODIFICATION. Can check this -
Reordering

TELL1Emulator.opts - "VeloTELL1Reordering"
// CUSTOM REORDERING

// Switches on custom channel re-ordering.

VeloTELL1Reordering.CustomReordering=true;

// Chooses the specific re-ordering method

VeloTELL1Reordering.CustomMethod=0; // sets the particular custom reordering method. 0 is no reordering, 1 shifts blocks of 512 as a test, 2 re-orders the Freiburg sensors.

Velo modules have a complicated strip layout, meaning that the order in which strips are read out doesn’t correspond very well to their physical position. So, reordering is required. However, in these basic MIP tests we normally have a regular set of strips bonded to the Beetle chip in order, so the reordering isn’t really needed. To switch off re-ordering, either put CustomReordering=false or set CustomMethod=0.
However, it is possible to alter the reordering code to create special methods of re-ordering. The new method can be assigned a number, and then CustomMethod can switch to this method. At the moment, 1 shifts the data in blocks of 512 as a test, and 2 does special re-ordering for a sensor with an unusual bonding pattern. See later for information on modifying the Vetra code.

TELL1Checkers.opts – “VeloChannelReordererMoni”
This doesn’t produce any Ntuple data. However, it will produce a histogram, much like the other checkers.
Linear Common-Mode Suppression
TELL1Emulator.opts - "VeloTELL1LCMS"
Common-mode signals are unwanted signals such as interference appearing on many detector strips simultaneously. The LCMS stage separately looks at each block of 32 strips (corresponding to one readout link) in each event, and subtracts any common-mode signal present. The algorithm is designed to ignore any strips with a genuine hit signal, as described below.
The details of the algorithm are:

Take the block of 32 strips, and make a least-squares fit with a linear function.

Subtract the linear fit from the data, as a first iteration of common-mode suppression.

Look at the resulting data to see if there are any data points which don’t match the linear fit (which might be real data). To be more specific, we find the strips where

(Strip signal – Linear fit)2 > 3*(Variance of linear fit).

The linear fit and subtraction is then repeated, ignoring the strips which didn’t match the previous attempt at the linear fit.
In this version of Vetra, the algorithm has been changed slightly, to ignore the signal on the first strip of each block of 32. This is because this strip usually has a great deal of header interference, and tends to worsen the LCMS fit applied to the other strips.

TELL1Checkers.opts - "VeloLCMSMoni"
This is the final stage of processing before clusterization, so this “checker” stage is more sophisticated than the previous ones. It can be useful for looking at the behaviour of strip signals if you’re not sure whether the cluster maker will work accurately. For example, when I tested a sensor with an unusual bonding pattern, I had to work with this stage until I had the proper strip reordering sorted out (since the cluster monitor would attempt to form clusters using strips that weren’t actually adjacent).
When I first worked with this, it was during a beam test where we had 2 modules in the beam at once. When I started working with the TELL1 in the lab, I changed the code somewhat. So, some of the options I originally programmed in became obsolete. Only the working options are listed below. Note that some of the options are identical for the cluster monitor and LCMS monitor
// OPTIONS FOR BOTH LCMS AND CLUSTER MONITOR

// Used to specify if you want to avoid channels with header interference when writing ntuples.

VeloLCMSMoni.HeaderWidth=2;

VeloClusterMoni.HeaderWidth=2;

// Specify the no. of samples taken for every trigger on the detector:

VeloLCMSMoni.nSamples=1;

VeloClusterMoni.nSamples=1;

// If using the "source test" version of Vetra, specify the module and detector nos (0-3 in each case)

VeloLCMSMoni.ModuleNumber=0;
// Put back to 0

VeloClusterMoni.ModuleNumber=0;

VeloLCMSMoni.DetectorNumber=3;
// Put back to 3

VeloClusterMoni.DetectorNumber=3;

The options above describe the detector setup.

As mentioned earlier, the data from the Beetle is read out in blocks of 32, and the first strip or two often suffer from header crosstalk. The HeaderWidth option sets how many strips at the start of each block of 32 we will ignore when we select hits.

When running the test setup, it is possible to take multiple samples every time a trigger is produced by the PMT. nSamples should be set to match this. The LCMS monitor adds information to each sample, so that if we take (say) 5 samples after each trigger signal, we know exactly which data belongs to which set of 5.***
Lastly, we need to specify which module we’re testing, and which detector in the module. This allows Vetra to ignore all the other strips in the TELL1. The “ModuleNumber” depends on which ADC card the module is connected to – the ADC cards are numbered 0-3 from the top down, and 0 corresponds to strips 0-512, etc. The DetectorNumber also goes from 0-3, and refers to blocks of 128 strips in order – e.g. on module 0, strips 0-127 are detector 0, 128-255 are detector 1, 256-383 are 2, and 384-511 are 3. Note that this doesn’t correspond so directly to the physical ordering of the chips on the module, or the chip numbering.
// LCMS OPTIONS

// Set WriteAll to 1 if you want to write all the strip data to the output file (this is useful as part of extracting the pulse shape)

VeloLCMSMoni.WriteAll=0;

// Set LCMS ntuple threshold during source tests

VeloLCMSMoni.HitThreshold=8;

When we write the N-Tuple for the LCMS stage, if we set “WriteAll” to 0 then we will regard a strip as a “hit” if the magnitude of its signal exceeds HitThreshold, and the neighbouring strips have smaller signals. If WriteAll=1, then we will automatically write the data for every strip. This can be useful in certain cases, such as extracting the shape of the front-end pulse.
Output of the stage
As with the previous stage, we produce a histogram and an NTuple in the appropriate files
// NB - the options below apply to an older version of the code used for running multiple modules

// Set LCMS ntuple threshold WHEN DATA ARE WRITTEN FOR EVERY DETECTOR

// Note we now use two Header thresholds for Gla and Fre sensors. For Fre, set header threshold low if re-ordering used. Can set very high to cut the data altogether.

VeloLCMSMoni.HitThresholdGla0=8;

VeloLCMSMoni.HitThresholdGla1=8;

VeloLCMSMoni.HitThresholdGla2=8;

VeloLCMSMoni.HitThresholdFre0=8;

VeloLCMSMoni.HitThresholdFre1=8;

VeloLCMSMoni.HitThresholdFre2=8;

VeloLCMSMoni.HitThresholdGlaHeader=22;

VeloLCMSMoni.HitThresholdFreHeader=22;

Clustering
TELL1Emulator.opts - " VeloClusterMaker"
When a hit occurs on a sensor, it is often spread across multiple strips, either because charge has diffused from one strip to another during collection, or because the particle has passed through the sensor at an angle and hit multiple strips. The cluster maker combines these strip signals into a single hit, allowing us to find the total charge collected. Potentially this can also allow you to get hit positions with greater accuracy (e.g. in 3 hit clusters, the relative signal size on the left and right strips gives information about exactly where within the centre strip the hit occurred).
This has a lot of options to control cluster forming, as described below.
// CLUSTER MAKER

VeloClusterMaker.InclusionThreshold = 0.1F;

VeloClusterMaker.DefaultSignalToNoiseCut = 3.0F;

VeloClusterMaker.DefaultClusterSignalToNoiseCut = 4.5F;

VeloClusterMaker.NoiseConstant=500; // Default 500 - changed this to 600 to alter threshold.

VeloClusterMaker.NoiseCapacitance=50;

VeloClusterMaker.StripCapacitance=20;

VeloClusterMaker.ElectronsFullScale=200000;

VeloClusterMaker.ADCFullScale=256;

// Explanation:

// Total noise (electrons)=NoiseConstant+NoiseCapacitance*StripCapacitance. Default is 1500.

// Noise scaled to equivalent ADC count = Total noise (electrons) * ADCFullScale / ElectronsFullScale. The second term is 1.28E-3 here

// Then, calculate SNR = ADC value / ADC equivalent noise.

// The "cuts" refer to the SNR for a strip to be included in any clusters, and the SNR for the total signal in a cluster

// The inclusion threshold means that to add a strip to a cluster, the added strip must have at least 0.1 (or whatever) * the main strip signal.

THE ALGORITHM
Setting the noise level: First, the user specifies the expected noise level, which in turn sets various thresholds.
Firstly, you have to specify the total expected noise (in electrons) by setting the following 3 parameters:

Total noise (electrons)=NoiseConstant+NoiseCapacitance*StripCapacitance

Then, this is scaled to the equivalent ADC value, using the value of ADC full scale (256, i.e. the range -128 to +127) and the full scale electron signal. Then, the program calculates

ADC noise = Total noise (electrons) * ADCFullScale / ElectronsFullScale

To be honest, while it’s possible to measure a detector’s capacitance etc to get the above, it’s easier to just do a noise run with your detector, find the noise in ADC counts, and fiddle the values above appropriately.

Selecting strips for clustering
Firstly, the algorithm decides which strips actually have meaningful signals on them, by selecting all the strips whose signal exceeds a threshold set by

ADC noise * VeloClusterMaker.DefaultSignalToNoiseCut
The default value of VeloClusterMaker.DefaultSignalToNoiseCut is 3, so we require a signal of at least 3 times the noise sigma.

Forming clusters

After selecting this set of strips, we pick the one with the largest signal, to act as the “seed” of a cluster. If the strips next to this strip were also selected in the previous step, we can add up to 4 of them (2 on either side) to the cluster, with the following requirements:

- The signal on the adjacent strips must be at least “VeloClusterMaker.InclusionThreshold”* the seed strip value. This means we will only add adjacent strips if they’ll make a reasonable contribution to the total cluster signal. The default setting is 0.1

- The strip signals must decrease monotonically as we move away from the seed strip. This reduces the risk of combining two separate clusters that just happened to occur next to each other.
Then, we sum the signals on the strips in this cluster. If the total signal exceeds

VeloClusterMaker.DefaultClusterSignalToNoiseCut * (ADC noise) we accept the cluster, and the program notes that the strips in the cluster are no longer available to form other clusters. Since the cluster signal to noise cut is higher than the individual strip cut, this helps us to find low-signal, multi-strip clusters without introducing too many false clusters from random noise. If the cluster is not accepted, the strips are still available to form other clusters.
This process is repeated until all the strips are used up, or we are unable to form any more acceptable clusters.
TELL1Checkers.opts – VeloClusterMoni
Because the Emulator stage specifies all the threshold etc. for clustering, there are relatively few options in the Checkers stage. There are a few identical options to the LCMS stage. There is also a “PrintInfo” option which will produce various debug statements if set to true.
// OPTIONS FOR BOTH LCMS AND CLUSTER MONITOR

// Used to specify if you want to avoid channels with header interference when writing ntuples.

VeloLCMSMoni.HeaderWidth=2;

VeloClusterMoni.HeaderWidth=2;

// Specify the no. of samples taken for every trigger on the detector:

VeloLCMSMoni.nSamples=1;

VeloClusterMoni.nSamples=1;

// If using the "source test" version of Vetra, specify the module and detector nos (0-3 in each case)

VeloLCMSMoni.ModuleNumber=0;
// Put back to 0

VeloClusterMoni.ModuleNumber=0;

VeloLCMSMoni.DetectorNumber=3;
// Put back to 3

VeloClusterMoni.DetectorNumber=3;
Info –

Background to Vetra

Basic running procedures

LHCb software framework

Emulators and checkers – output, options

Customisation of code

Data analysis afterwards

Decoding with Vetra
Assuming you’ve set up Vetra:

Go to the folder with LHCb software:

source vetrasetup.sh
This should take you to the folder

/home/whoever/cmtuser/Vetra_v5r0/Velo/Vetra/v5r0/cmt

Then, open the options file

emacs ../options/VetraTELL1NZSsource.opts

In this file, there are clearly-labelled sections where you should put the name of the input *.dat file, and the names of the output *.root histogram and N-tuple files. Generally, I’ve given the root files the same name as the input, but with .dat changed to .root and either “Hist_” or “NTuple” added to the start.

There are also a couple of other files you might have to alter.

Firstly, ../options/TELL1Checkers.opts has various options relating to the output files. The most important options are ModuleNumber and DetectorNumber. With a source test, we will only be getting useful data from one detector at a time. However, since we can connect up to 4 modules, with 4 detectors each, we need to tell Vetra which detector contains the useful data. The numbering runs from 0-3. At the moment, the top data input on the TELL1 corresponds to module 0. Then, on the modules we’re using,

Additionally, the nSamples values should be set to match the number of samples you took with each trigger. This makes it more convenient to work out exactly when each sample was taken.
Secondly, ../options/TELL1Emulator.opts allows you to change the settings of the cluster maker (thresholds etc.).

Then, to run Vetra from the cmt folder, type:

../slc4_ia32_gcc34/Vetra.exe ../options/VetraTELL1NZS.opts

Sorting the files
Last but not least, when we take 5 consecutive samples from the TELL1 they won’t necessarily arrive in the output file in the right order. A script is needed to do this re-ordering, and also add useful information such as flagging bad scripts.

Start root.

Loading:

.L VetraSortSource_window.cpp++
This is the best script to use with the source data, where we will only be dealing with a single sensor at a time.

The function is defined as

void sort(char rootFile[], int WindowDelay)
It takes the input file name, and also the “window delay”, i.e. the length of time after the clock edge that the 5ns trigger acceptance window arrives. It does the file re-ordering, and uses the window delay to work out the time that each sample was taken. Note that for a single file, we will only get samples taken at (say) 5ns, 30ns, 55ns, 80ns, 105ns etc. To get a full time spectrum, we need to take 5 runs with different timing, then combine them (see below).

