Event Builder and CCPC software control
Event builder

General instructions are here, but they’re a little out of date.

http://lhcb-daq.web.cern.ch/lhcb-daq/meprx/index.html
The setup of the software involves getpacking OnlineTasks, part of the Online project, which then goes in the folder Online_v3r5/OnlineTasks.

SETTING UP THE EVENT BUILDER (AFTER INSTALLATION)

The commands to set up the event builder are contained in script files. The first couple of them should be run from the folder with the lhcb software (cmtuser in some cases, lhcbsoft on my home space). Note that the contents of each script are listed below the name – you don’t have to type this all in.

source afterReboot.sh

/usr/local/bin/dns 2>&1 >> /dev/null &

sudo /sbin/sysctl -w net.core.rmem_max=1000000

This is the first script to be run. It starts up the DIM name server needed to receive data via the Ethernet cable, and also increases buffer space. This should be run only once. Note that this command uses sudo (superuser command) which needs an appropriate password.

source newShell.sh

export DIM_DNS_NODE=ppepc28.physics.gla.ac.uk

source lhcbsetup.sh

setenvOnline // This also shifts us into the folder Online_v3r5

cd Online/OnlineTasks/v1r5/cmt/

source ./setup.sh

This sets up the details of the DNS address we’re getting data from. The lhcbsetup.sh script specifies where the lhcb software is kept locally, etc. The next few commands set us up to use the OnlineTasks package (e.g. by setting environment variables). Note that this differs from what the webpage says – this is correct. This script needs to be re-run if you open a new shell.

RUNNING EVENT BUILDER

Currently, we should be in Online_v3r5/Online/OnlineTasks/v1r5/cmt/

An options file needs to be changed to set the output file:

emacs ../options/DiskWR.opts &

The Writer.Connection option sets the output file path.

Then, the event builder can be started with

source runEBuild.sh

. ../job/hltrx.sh

export UTGID=MDFWriter && ${gaudi_exe} -opt=../options/MDFWriter.opts -msgsvc=${MSGSVC} -auto &

If you look in hltrx.sh, this is a script that starts up each of the components of the event builder. The MDFWriter line then starts up the file writer.

When the event builder starts up, a lot of windows open up.

MBMMon@pcfreiburg window is the one to look at – it shows you the number of samples that have been received from the TELL1. It has separate buffers for

To stop the data acquisition:

killall Gaudi.exe

Problem with multiple users:

When the event builder runs, it creates various files in /dev/shm/ to store buffered data. These remain there after you stop the event builder. “runEBuild.sh” (which calls on another script called hltrx.sh) automatically deletes these files before starting the event builder. However, if the event builder is run by a different user later on, because the left-over files were created by a different user, they can’t be deleted. Then, the buffers can’t be initialised properly. (This can be seen in the MDMMon window – instead of having 4 buffers listed, there will just be one.)

To avoid this, once you are done with the event builder, be sure to delete these files:

rm –f /dev/shm/bm_*

SETTING UP A NEW EVENT BUILDER

There is a webpage on this at http://lhcb-daq.web.cern.ch/lhcb-daq/meprx/index.html

However, some parts of it don’t seem to work quite right

It’s possible to copy the entire Online_v3r5 folder from somewhere else, along with the scripts etc. Then, you should run the two scripts above (taking you to the cmt folder) and use the following commands to rebuild the code:

cmt br cmt config

cmt br source ./setup.sh

cmt br gmake

If you use this approach with the pc in the lab, then the event builder package should already be set up fine, so this is probably the easiest way of doing things.

Alternatively, you can getpack the relevant code across. Go to the cmtuser folder (or lhcbsoft, or whatever):

setenvOnline // (choose v3r5 when prompted)

getpack -f ssh Online/OnlineTasks // (choose v1r5 when prompted)

You can rebuild the code as above, after copying the scripts.

Note that if you take this approach, you will need to make some changes to the command files, as listed below.

IP addresses

Both the TELL1 and the PC have gigabit Ethernet cards, so the TELL1 can send event data to the PC. The IP addresses of the cards are fairly arbitrary (since we effectively have a network with only 2 device connected), but they must be set consistently in the TELL1 configuration, the PC configuration, and the event builder options files. In our lab setup, the IP addresses start with 192.168.100, and we chose to add 28 for the PC (ppepc28) and 27 for the TELL1 (the serial number).

The IP address of the GBE card on the TELL1 is programmed using the credit-card-sized PC (CCPC). When you load a configuration file (.cfg) there is a parameter which sets the IP address of the GBE card. There is also a second parameter which sets the destination IP address, which should match the card on the PC. The specific lines are listed below.

_L0003:___ [192.168.100.28] --Destination IP, The two last bytes are replaced by TTC/ECS info

_L0005:___ [192.168.100.27] --Source IP

The ethernet card Eth1 on the PC receives the data from the TELL1. Its configuration file is /etc/sysconfig/network-scripts/ifcfg-eth1. In this file, you set the IP address of the card. For the pc in the lab, this is 192.168.100.28.

Then, there’s the event builder setup.

You need to change the options file ../options/EBSetup.opts.

The file’s contents are listed below. The Runable.rxIPAddr should match the card on the PC (eth1) and the Runable.IPSrc should match the TELL1’s card. The TELL1 can be given a name as shown below, though this is fairly arbitrary.

Runable.ethInterface = 1; // interface number for data input eth"0" eth"1" etc...

//Runable.IPNameOdin = "192.168.212.200"; // IPv4 address of the Readout Supervisor (ODIN) as a name or in dotted decimal notation, if not set

 // no MEP requests will be sent

Runable.rxIPAddr = "192.168.100.28";

Runable.IPSrc = { "192.168.100.24", "TELL1_24", ""

//

 ,"192.168.212.45", "TELL1_2", ""

//

 ,"192.168.212.46", "TELL1_3", ""

 }; // IP addresses of the data sources (TELL1, UKL1, ODIN)

Unusual Event Builder fix

Somewhat strangely, the event builder’s default setup only writes ¼ of the samples from the TELL1 to the disk. As far as I know, this was a feature used when testing the event builder, which wasn’t changed before it was made widely available.

This comes from a “prescaler” function. If you look in ../options/ReadMBM.opts, there is an option

Prescaler.PercentPass = 100;

However, when the event builder runs, it actually calls on the file

/pcdisk/ppepc28/lhcb32/lhcb/ONLINE/ONLINE_v3r5/Online/GaudiOnline/v2r7/options/ReadMBM.opts, and sets the Prescaler.PercentPass to something lower! This file must be altered directly, and the PercentPass set to 100.

OTHER COMMENTS ON EVENT BUIILDER

Building the code:

When I first installed the event builder, I made the mistake of getpacking both v1r4 and v1r5 of OnlineTasks. Although I made a point of always running the event builder from within v1r5, I had problems with it until I deleted v1r4 and then re-built the code for v1r5 (using cmt br cmt config, cmt br source ./setup.sh, cmt br gmake)

Debugging advice:

“Tcpdump” allows you to print out info about the packets received by the Ethernet card on the PC, eth1:

sudo /usr/sbin/tcpdump –vi eth1

When using the TELL1, this can be used to check if the PC is really receiving packets from the TELL1. The source and destination IP addresses for each packet will also be given, so you can double-check the IP addresses you’re using on the TELL1. This is a useful check on whether the TELL1 or the event builder is having problems.

Kernel problems:

Setting up the event builder on a computer requires adding a patch called raw_cap_hack to the Linux kernel. When the kernel is updated, the updated version is no longer patched. The event builder will appear to start up OKish, but no hits will register. When this happens, the following error message should appear in the ErrorLogger window:

Mar 31 15:20:54 MEPRx ERROR socket Operation not permitted in StatusCode LHCb::MEPRxSvc::openSocket():709

Mar 31 15:20:54 ServiceManager ERROR Unable to initialize Service: Runable

Mar 31 15:20:54 Exec ERROR Failed to initialize application manager

Fixing –

/lib/modules contains various folders with kernel code:

2.6.9-34.0.2.EL.cern 2.6.9-55.0.2.EL 2.6.9-67.0.4.EL

2.6.9-42.0.2.EL.cernsmp 2.6.9-55.0.2.ELsmp 2.6.9-67.0.4.ELsmp

2.6.9-42.0.3.EL 2.6.9-67.0.15.EL 2.6.9-67.0.7.EL

2.6.9-42.0.3.ELsmp 2.6.9-67.0.15.ELsmp 2.6.9-67.0.7.ELsmp

Type

uname –a

to get information on the currently running one, for example:

Linux ppepc28.physics.gla.ac.uk 2.6.9-67.0.15.ELsmp #1 SMP Wed May 7 04:33:01 CDT 2008 i686 athlon i386 GNU/Linux
Normally, the older versions of the kernel would be deleted, but the installer won’t delete files it didn’t install in an older version. So, if we go an older version of ELsmp we can find the raw_cap_hack patch there.

/lib/modules/2.6.9-67.0.7.ELsmp/kernel/net/raw_cap_hack.ko
This then needs to be copied to the new kernel, for example:

cp /lib/modules/2.6.9-67.0.7.ELsmp/kernel/net/raw_cap_hack.ko
/lib/modules/2.6.9-67.0.15.ELsmp/kernel/net/raw_cap_hack.ko
After this, use

/sbin/depmod –a
to sort out the module dependencies

Then, after restarting,

/sbin/lsmod
will check all the modules used by the current kernel – raw_cap_hack should be included.
CCPC

There are 2 connections between the TELL1 and the Linux pc:

1) Both PC and CCPC (credit-card sized PC, mounted on the TELL1) are connected to the PPE network via Ethernet, allowing the PC to start and control the CCPC using ssh.

2) There is a direct Ethernet cable link sending the data from the GBE (one way) to the desktop. This uses a second Ethernet card in the desktop.

The desktop acts as a server for the CCPC, since when the TELL1 crate is switched on, the CCPC mounts various C files from the Linux desktop.

http://lhcb-online.web.cern.ch/lhcb-online/ecs/ccpc/default.htm is a general page on the use of CCPCs in LHCb.

http://lhcb-daq.web.cern.ch/lhcb-daq/ccpc/baseinstall/index.html talks about setting up the CCPC server, so that you can operate a CCPC from a computer.

One particular feature of the setup is configuring two ethernet cards.

Eth0 is the general purpose card which does the network functions, including communicating with the CCPC. Its configuration file is /etc/sysconfig/network-scripts/ifcfg-eth0.

Eth1 (similarly named) effectively constitutes a network consisting of just the eth0 card on the desktop and the GBE card on the TELL1. It is a one-way channel sending output data from the TELL1 to the desktop.

Both the configuration files need to be set up so that the correct IP addresses etc. are used. Also, Will set up a “virtual” card eth0:0, so that eth0 can communicate with both the standard, secure parts of the PPE network and the nonsecure connection to the CCPC.

Connecting to the ccpc

On the desktop PC, the folder /opt/ccpc/root contains the main directories used by the CCPC.

By opening a Linux window, and using “ssh cc@pctell27”, with the password tell1user, you can control the CCPC. The directories seen by the CCPC (named pctell27) correspond to those in the folder on the desktop named above.

Naturally, this can only be done when the TELL1 is on, and it takes a couple of minutes before it’s ready for use.

Controlling the CCPC after connecting

Normal linux commands can be used. The specific TELL1 functions are provided by C code from the library tell1lib.

See http://lphe.epfl.ch/~ghaefeli/tell1lib_c-code.htm
reset_tell1 Apply a hardware reset to all FPGAs, the TTCrx and the GBE card. version_tell1 Displays the tell1lib software version and the FPGA code version. cfg_tell1 Setup the TELL1 with the parameter given in the configuration file, *.cfg, which is given as the argument. Configuration files are held in /home/cc/tell1lib_release_v2.0/ccpc_daq (on the CCPC – also exists by going to the desktop PC’s folder as described above). The configuration file is worth looking at to see the functions available (see the guide mentioned above for an example).

Configuration files are needed to set up the TELL1 as a whole, and also separate config files will set up each of the Beetle chips we’re using.

console_tell1 The console allows you to configure and monitor all resources of the TELL1. This is the debugging tool for the TELL1. If the TELL1 is using internal triggers produced by the CCPC, then they can be activated from this console, which is very handy for testing, particularly in conjunction with the data generator.

daq_tell1 Reload FPGA firmware, reset and apply the parameters from the configure file to the TELL1. It displays all initialization options, status values and displays continuously the DAQ statistics.

USING THE CCPC WHEN TESTING DETECTORS

As described previously, you need to ssh to the CCPC, and navigate to the folder where the config files are held.

When testing with real data, you then need to do the following:

Load all the individual Beetle config files, for example:

cfg_tell1 3DIntTFC_Addr16_source_newset.cfg

cfg_tell1 3DIntTFC_Addr18_source_newset.cfg

cfg_tell1 3DIntTFC_Addr20_source_newset.cfg

Load the config file to set up the TELL1 as a whole (without affecting Beetles). For example, for external triggering:

cfg_tell1 3DExtTFC_NoModConf_alt.cfg

TELL1 CONFIGURATION FILES

The config files are fairly lengthy. I’ve copied the major points below.

Note that most of the variables are set with hexadecimal values.

One important point is the way the Beetle chips are programmed. Only 2 of the lines in the config file actually configure the Beetle chip – the 20 registers of the Beetle (described in more detail in the Beetle manual) and the test pulse select.

When the configuration file is run, it automatically programs the TELL1. Then, it looks at

_L0038:___ [0] --TA_enable

If this is set to 0, none of the Beetles will be programmed. If it is set to 1, then one Beetle chip will be programmed. The TELL1 then looks at the following line:

_L0043:___ 0x[10] --The base address of the first Beetle

The Beetle chip with the corresponding address will be programmed. Since we have 10hex here, this will be number (1*16+0*1)=16.

Then, the two Beetle-related settings will be applied:

_L0047:___ 0x[16,4C,0A,0A,00,47,05,00,00,00,0D,82,69,14,1A,66,11,1C,00,0A] --The 20 registers of Beetle chips

_L0048:___ 0x[00010000,00010000,00010000,00010000] --TpSelect for beetle

The most convenient way to set up the system, described in the previous page, is to have 4 configuration files. The first three have TA_enable set to 1, and are used to program the Beetle chips. (At the same time, the TELL1 will automatically be programmed, but at this point the settings are unimportant.) After this, we run one configuration file with TA_enable set to 0, containing the correct TELL1 settings. This will program the TELL1, without altering the Beetles. The makes it easier to make changes to different parts of the system independently.

Below, the specific details are discussed.

Setup of Gigabit Ethernet card

_L0003:___ [192.168.100.28] --Destination IP, The two last bytes are replaced by TTC/ECS info

_L0004:___ 0x[00:04:23:A6:1F:19] --Destination MAC

_L0005:___ [192.168.100.27] --Source IP

_L0006:___ 0x[00:02:B3:E8:A8:00] --Source MAC the last byte is replaced by the port number 0..3

_L0007:___ 0x[800] --Ethernet type(16b)

_L0008:___ 0x[4] --IP version number(4b)

_L0009:___ 0x[5] --Internet header length in 32-bit words(4b)

_L0010:___ 0x[0] --Type of desired service for IP packet(8b)

_L0011:___ 0x[FF] --Time in seconds for IP packet to stay in the Ethernet(8b)

_L0012:___ 0x[F2] --Next level protocol(8b)The source and destination IPs must be set consistently here, in the GBE setup on the PC, and in the event builder. See the event builder section. The other options can be left as default.

Control and processing

_L0013:___ [1] --Detector ID(1-VELO,2-ST,3-OT,4-EHCAL,5-MUON,6-L0MUON,7-L0DU,8-L0PU,9-RICH,10-PSSPD)

_L0014:___ [0] --pedestal_bank_schedule

_L0015:___ [0] --TTC_info_enable. 1=TTC trigger used, 0=triggers and all info sent by ECS

_L0016:___ [1] --External_trigger_input_enable. 1=Ext. trigger used, 0=disable Ext. trigger

_L0017:___ [0] --TTC_trigger_type_available. 1=TTC, 0=ECS

_L0018:___ [0] --TTC_dest_ip_available. 1=TTC, 0=ECS

_L0019:___ [0] --Detector_data_generator_enable

_L0020:___ [0] --SEP_generator_enableMost of these should be kept as listed here.

The TELL1 can run with or without an external 40MHz clock and an external trigger.

The choice of clock is not set by the configuration file. If resistor R168 is in place on the TELL1 board an internal clock is used, and if it’s removed it takes an external clock. The external clock uses TTL levels (+3.3V and 0V), and should be connected to the lower Lemo connector at the back of the TELL1 - the connector is labelled as the clock.

Set External_trigger_input_enable to 1 to use the external trigger. The external trigger should be applied to the LEMO connector on the back of the TELL1 as shown previously. Aside from the external trigger, it is possible to use the console_tell1 command to send a series of internal triggers. So, this option should be 1 for MIP tests, and 0 for noise / test pulses.

TTC is the Trigger and Timing Control for the LHC. There is a TTC connection on the TELL1, which can take these LHC signals, but for a stand-alone system we use ECS (Experimental Control System). These options don’t need to be changed.

Finally, by setting Detector_data_generator_enable to 1, instead of reading a real signal from the ADCs we read a list of values stored in memory on the ADC cards. (These vals are set later in the command file.) This can be useful for testing the setup, but should be set to 0 when taking real data!

Controlling FEM and Trigger Adapter

============FEM, Trigger Adapter, and DAC enable============

_L0037:___ [1] --FEM_enable (if=1 set Beetle values in Velo specific)

_L0038:___ [0] --TA_enable (if=1 set Beetle values in Velo specific)

_L0039:___ 0x[F] --DAC_set_enable, (in hex, enable DAC configuration each card (A-Rx) one bit (0x1 for A-Rx0, 0x2 for A-Rx1 ... , 0xF for all)

The FEM (Front-end emulator) is a Beetle chip on the TELL1. This is used for timing information. Each individual Beetle chip will produce signals to let the DAQ know when it is OK to read out data, etc. On the TELL1, instead of reading these signals from every single chip, we use the FEM. So, the FEM should be enabled. The parameters can be specified later in the command file.

The Trigger Adapter is used to program the Beetles attached to the TELL1. One Beetle can be programmed at a time. If TA_enable is set to 0, then none of the Beetle chips will have their configuration changed. This is described previously.

Setting up the Trigger Adapter Beetle

============Parameters for Trigger Adapter beetle============

_L0042:___ [0] --TA_testpulse_enable

_L0043:___ 0x[30] --The base address of the first Beetle

_L0044:___ [1] --The number of TA beetle array

_L0045:___ [75] --clock phase for the testpulse signal(0-99)

_L0046:___ [11] --latency for the testpulse

_L0047:___ 0x[16,4C,0A,0A,00,47,05,00,00,00,0D,82,69,14,1A,66,11,1C,00,0A] --The 20 registers of Beetle chips. Register 16 (counting from zero) is the latency, currently 17 (11hex). Preamp and shaper feedback capacitor settings match LHCb note

_L0048:___ 0x[00010000,00010000,00010000,00010000] --TpSelect for beetle. Each word for one beetle link, 1bit per strip, same for all Beetles

This controls the Trigger Adapter, which sends the control signals to the Beetle chips.

The important factor here is the Beetle base address. Each Beetle has an address, which is set by connecting a series of input connections on the Beetle to high or low to represent the address in binary. This allows you to control the programing of an individual Beetle. On the n-on-p module we have addresses 16, 18, 20 (i.e. 10, 12, 14 in hex).

TA_testpulse_enable: When this is 1, whenever a trigger signal is sent via the trigger adapter, a test pulse signal will be sent as well. (This is independent of TA_enable above)

The clock phase and latency for the test pulse signal control precisely when the test pulse is given.

BEETLE CONFIGURATION: The 20 registers of the Beetle chip are programmed here. See the manual for full details. The registers are numbered from 0 upwards.

Register 16 (where the first is register 0) sets the latency, i.e. the length of the data storage pipeline in the Beetle chip. Every 25ns, the Beetle samples the signal on each of its strips, and stores these samples in its pipeline buffer. When it receives a trigger signal, it lets the TELL1 read out the sample that was taken “latency” clock cycles ago. So, the correct latency setting has to be chosen to compensate for the time delay between the hit on the detector occurring, and the trigger arriving at the Beetle. Correct latency settings are specified in XX

Registers 4 and 5 set the feedback resistance for the preamplifier and the shaping amplifier respectively.

Register 0 sets up the amplitude of the test pulses. As described in the Beetle reference manual, the pulse amplitude is 1025e- * the register value. Here, it is 16hex i.e. 22 decimal, to give 22550e- signal.

TpSelect also programs the Beetle. It chooses which strips are given the test pulse. Each hex value represents 4 strips. For example if we wanted the first 4 strips to have the test pulse pattern 1010, then the first hex value would be A.

Fine control of TELL1 readout

_L0073:___ [5] --cable_delay in clock cycles

_L0074:___ [9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9] --The phase delay setting for analog link 0-15, values per link

_L0075:___ [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3] --The phase delay setting for analog link 16-31, values per link

_L0076:___ [9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9] --The phase delay setting for analog link 32-47, values per link

_L0077:___ [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3] --The phase delay setting for analog link 48-63, values per link

_L0078:___ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] --The cycle delay setting for analog link 0-15, values per link

_L0079:___ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] --The cycle delay setting for analog link 16-31, values per link

_L0080:___ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] --The cycle delay setting for analog link 32-47, values per link

_L0081:___ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] --The cycle delay setting for analog link 48-63, values per link

_L0081:___ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] --The cycle delay setting for analog link 48-63, values per link

The cable delay specifies the delay in clock cycles between the TELL1 sending the trigger and the data returning from the Beetle. The data is read out serially from each block of 32 strips, and setting this wrongly will mean that we fail to receive the data from strips either at the start or end. However, setting it too low forces the TELL1 to start reading out too early, allowing us to actually see the header signals sent by the Beetle. This can be useful.

CONNECTIONS

There are 2 connections on the TELL1 for external signals – TTC and LEMO (see manual). The TTC is a system for the Trigger and Timing Control in the LHC. The lemo connectors can be used for the stand-alone operation.

Looking at the Beetle chip, the trigger works as follows:

[image: image1.wmf]
So, the trigger is sampled on the falling edge of the clock – this effectively means that we regard the “start” of the clock cycle to be the rising edge, and hold the trigger signal high for the duration. In turn, consecutive samples can be taken by holding the trigger high for the correct duration. So, can work out the logic for this reasonably simply – trigger signals should be started when clk goes low->high, and last for a multiple of 25ns.

