Line: 1 to 1 | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZZ Fusion Analysis | |||||||||||||||||||||||||||||||||||||
Line: 28 to 28 | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
Changed: | |||||||||||||||||||||||||||||||||||||
< < | The JetFinder processor reconstructs 4 jets events from the input collection (LooseSelectedPandoraPFANewPFOs was used). For the reconstructed 4 jets, TrueAngularJetFlavourProcessor does 'truth tagging', i.e. determines the MC jet flavour (b-jet or c-jet). | ||||||||||||||||||||||||||||||||||||
> > | The JetFinder processor reconstructs 4 jets events from the input collection (LooseSelectedPandoraPFANewPFOs was used). For the reconstructed 4 jets, MyTrueAngularJetFlavourProcessor determines MC Jet Flavour by angular matching of heavy quarks to jets, and also determines hadronic and partonic charge of the jet | ||||||||||||||||||||||||||||||||||||
The LCFI processors have the following functions:
| |||||||||||||||||||||||||||||||||||||
Changed: | |||||||||||||||||||||||||||||||||||||
< < |
| ||||||||||||||||||||||||||||||||||||
> > |
slcio files contain the collections: LooseSelectedPandoraPFANewPFOs, MCParticlesSkimmed, PandoraPFANewClusters, PandoraPFANewPFOs, PandoraPFANewReclusterMonitoring, ProngVertices, RecoMCTruthLink, SelectedLDCTracks, SelectedPandoraPFANewPFOs, TightSelectedPandoraPFANewPFOs and V0Vertices. | ||||||||||||||||||||||||||||||||||||
The LCIOOutput processor creates new slcio files containing the new collections added by the above processors. We found that the most time-consuming processor is ZVTOP_ZVRES with more than 10 s/event.
Neural Network Training | |||||||||||||||||||||||||||||||||||||
Changed: | |||||||||||||||||||||||||||||||||||||
< < | The slcio files created at the previous step contain the collections Durham_4Jets, FlavourTagInputs and TrueJetFlavour_4Jets, which we will use now to train our neural nets. We use the NeuralNetTrainer code included in the LCFI package. Separate nets were trained for 1, 2, or 3+ vertices to identify b-jets, c-jets, and c-jets with b background. Our steering file contains only: | ||||||||||||||||||||||||||||||||||||
> > | The slcio files created at the previous step contain the collections FTSelectedJets, FlavourTagInputs and TrueJetFlavour_4Jets, which we will use now to train our neural nets. We use the NeuralNetTrainer code included in the LCFI package. Separate nets were trained for 1, 2, or 3+ vertices to identify b-jets, c-jets, and c-jets with b background. Our steering file contains only: | ||||||||||||||||||||||||||||||||||||
<processor name="MyNeuralNetTrainer" type="NeuralNetTrainer"/> |