Line: 1 to 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ZZ Fusion Analysis | |||||||||||
Added: | |||||||||||
> > |
| ||||||||||
Added: | |||||||||||
> > |
| ||||||||||
Changed: | |||||||||||
< < | Neural Network training | ||||||||||
> > | Jet Finder and Flavour Tagging | ||||||||||
Changed: | |||||||||||
< < | We use the flavour tagging package LCFIVertex. This package consists of a topological vertex finder ZVTOP, which reconstructs secondary interactions, and a multivariate classifier which combines several jet-related variables to tag bottom, charm, and light quark jets. | ||||||||||
> > | We use the LCFI![]() | ||||||||||
Changed: | |||||||||||
< < | Our steering file will contain the following LCFI component processors and a neural net trainer: | ||||||||||
> > | Our steering file will contain the jet finder, flavour tagging and LCFI processors, and we will write new slcio files containing the added collections: | ||||||||||
<group name="JetFinders"/> <group name="MyTrueAngularJetFlavourProcessorCollection"/> | |||||||||||
Line: 18 to 25 | |||||||||||
| |||||||||||
Changed: | |||||||||||
< < | | ||||||||||
> > | | ||||||||||
Changed: | |||||||||||
< < | These processors have the following functions: | ||||||||||
> > | The JetFinder processor reconstructs 4 jets events from the input collection (LooseSelectedPandoraPFANewPFOs was used). For the reconstructed 4 jets, TrueAngularJetFlavourProcessor does 'truth tagging', i.e. determines the MC jet flavour (b-jet or c-jet). The LCFI processors have the following functions: | ||||||||||
| |||||||||||
Changed: | |||||||||||
< < |
| ||||||||||
> > |
| ||||||||||
| |||||||||||
Changed: | |||||||||||
< < |
| ||||||||||
> > |
The LCIOOutput processor creates new slcio files containing the new collections added by the above processors. We found that the most time-consuming processor is ZVTOP_ZVRES with more than 10 s/event.
Neural Network TrainingTheslcio files created at the previous step contain the collections Durham_4Jets, FlavourTagInputs and TrueJetFlavour_4Jets, which we will use now to train our neural nets. We use the NeuralNetTrainer code included in the LCFI package. Separate nets were trained for 1, 2, or 3+ vertices to identify b-jets, c-jets, and c-jets with b background. Our steering file contains only:
<processor name="MyNeuralNetTrainer" type="NeuralNetTrainer"/> | ||||||||||
The neural nets are saved as XML files in nnets/ and will be used for flavour tagging (next step). No slcio output is written at this time. | |||||||||||
Added: | |||||||||||
> > | Purity and Efficiency StudiesTo determine the optimal cut for our b-tagging, a purity vs. efficiency study was performed. | ||||||||||
Flavour Tagging | |||||||||||
Changed: | |||||||||||
< < |
| ||||||||||
> > | Now are ready to employ the FlavourTag processor, which will do flavour tagging using the neural nets trained in the previous step. Our steering file contains the following processors: | ||||||||||
Changed: | |||||||||||
< < | A new file containing with these collections added is saved to be used in our analysis. | ||||||||||
> > | <processor name="MyFlavourTag"/> <processor name="ZZfusion"/> | ||||||||||
Changed: | |||||||||||
< < | Acceptance Studies | ||||||||||
> > | The ZZfusion processor is used in our analysis. | ||||||||||
Changed: | |||||||||||
< < | Four Jet Events | ||||||||||
> > | Acceptance Studies | ||||||||||
Deleted: | |||||||||||
< < | Purity and Efficiency Studies | ||||||||||
Electrons from Hard BremsstrahlungLuminosity and Event Weights | |||||||||||
Deleted: | |||||||||||
< < | -- DanProtopopescu - 2013-06-28 | ||||||||||
\ No newline at end of file | |||||||||||
Added: | |||||||||||
> > |
|