Difference: AtlasDataAnalysis (88 vs. 89)

Revision 892011-03-01 - AlistairGemmell

Line: 1 to 1
 
META TOPICPARENT name="WebHome"
<-- p { margin-bottom: 0.21cm; }h1 { margin-bottom: 0.21cm; }h1.western { font-family: "Liberation Serif",serif; }h1.cjk { font-family: "DejaVu Sans"; }h1.ctl { font-family: "DejaVu Sans"; }h2 { margin-bottom: 0.21cm; }h4 { margin-bottom: 0.21cm; }h5 { margin-bottom: 0.21cm; }h3 { margin-bottom: 0.21cm; }h3.western { font-family: "Liberation Serif",serif; }h3.cjk { font-family: "DejaVu Sans"; }h3.ctl { font-family: "DejaVu Sans"; }pre.cjk { font-family: "DejaVu Sans",monospace; }a:link { } -->

Computentp, Neural Nets and MCLIMITS

Line: 21 to 21
  Samples are produced for the Neural Net from AODs - results have previously been obtained for MC samples derived from v12 and v15 of athena. Current efforts are directed toward debugging the v15 results, and then upgrading to v16 input. The inputs are created from AODs using the TtHHbbDPDBasedAnalysis package (currently 00-04-18 and its branches are for v15, 00-04-19 is for v16).
Added:
>
>

Current samples in use

Input data and cross-sections

These cross-sections are for the overall process, at √s = 7 TeV.

The ttH sample cross-sections are provided for the overall process - the MC is divided into two samples with W+ and W- independent of one another. These two samples are merged before being put through the ANN.

The tt samples were initially generated to produce the equivalent of 75fb-1 of data, based on the LO cross-sections. Taking into account the k-factor of 1.84, this means that now all samples simulate 40.8fb-1 of data. These samples have also had a generator-level filter applied - most events (especially for tt+0j) are of no interest to us, so we don't want to fill up disk-space with them, so we apply filters based on the numbers of jets etc. The Filter Efficiency is the fraction of events that pass from the general sample into the final simulated sample. To clarify how all the numbers hang together, consider the case of tt+0j. We have simulated 66,911 events - as said above, this corresponds to 40.8fb-1 of data. We have a Filter Efficiency of 0.06774, so the full number of events that a complete semi-leptonic event would be comes to 987,762 events in 40fb-1. Divide this by 40 to get the number of events in 1fb-1 (i.e. the cross-section), and you get 24,694 events per fb-1. Our starting point for our cross-section is 13.18, with a k-factor of 1.84, which gives a cross-section of 24.25 - so all the numbers compare with each other pretty favourably. This of course makes getting from the number of sensible state events to the number expected per fb-1 rather easy - simply divide by 40.8.... You'll notice that the cross-section includes all the branching ratios already, so we don't need to worry about that.

**IMPORTANT** The Filter Efficiency for these samples was calculated based on a no-pileup sample. The filter is generator level, and one of the things it will cut an event for is not enough jets. However, pileup adds jets, but these are added well after the filter. The net result is that a number of events that failed the filter would have passed, had the pileup been added earlier in the process. This means the filter efficiency (and thus the cross-sections) are incorrect, by a yet to determined amount....

For the other samples, however, we do need to worry about branching ratios - the quoted initial cross-section includes all final states, so we need to apply branching ratios to the cross-section to reduce it down, so that it reflects the sample we've generated. We then subsequently need to reduce the cross-section further so that it reflects the number of sensible states.

Sample Dataset numbers Cross-section (pb) Branching Ratios Filter Efficiency What the multiplicative factors are Effective cross-section (pb) Sources
ttH 109840, 109841 0.09756 0.676*0.216*2*0.675 0.8355 Overall 0.01607 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt7TeV
      0.676   W → hadrons   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)    
      2   Account for the 2 W decay routes    
      0.675   H → bb    
        0.8355 Lepton filter efficiency   Filter eff: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGHSG5Dataset7TeV
tt + 0j 105894, 116102 13.18 1.84   For sample 105894 24.25120 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.06774 Filter efficiency for sample 116102   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
tt + 1j 105895, 116103 13.17 1.84   For sample 105895 24.23280 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.2142 Filter efficiency for sample 116103   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
tt + 2j 105896, 116104 7.87 1.84   For sample 105896 14.48080 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.4502 Filter efficiency for sample 116104   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
tt + 3j 105897, 116105 5.49 1.84   For sample 105897 10.10160 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.5860 Filter efficiency for sample 116105   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
gg → ttbb (QCD) 116101 0.8986 0.676*0.216*2*1.84   Overall 0.48285 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
qq → ttbb (QCD) 116106 0.1416 0.676*0.216*2*1.84   Overall 0.07609 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
gg → ttbb (EWK) 116100 0.0875 0.676*0.216*2*1.84   Overall 0.04702 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
qq → ttbb (EWK) 116107 0.0101 0.676*0.216*2*1.84   Overall 0.00543 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
<-- /editTable -->

These cross-sections and branching ratios are correct as of 8 Feb 2011. qq→ttbb (EWK) is currently not being used, thanks to a bug in the production of the MC

Number of events surviving preselection, weights and TrainWeights

(See later in the TWiki for an explanation of weights and TrainWeights.) This table will be completed with all the relevant weights and TrainWeights at a later date - these values are to be compared to the output from Computentp to ensure everything is working as intended, and are calculated for the sensible cross-sections/events. (A quick check of the TrainWeight is to multiply the number so events of each background by their TrainWeight and sum them - by design, this should equal the number of entries in the ttH sample.)

Sample Dataset Number Pileup?   Number of events     Cross-section (fb)  
      Total Passing Preselection Sensible States Total Passing Preselection Sensible States
ttH (W+ sample) 109840 Yes 29968 2685 1936      
    No   2497 1761      
ttH (W- sample) 109841 Yes 29980 2764 2020      
    No   2600 1879      
ttH (total)   Yes 59948 5449 3956 16.07 1.460 1.060
    No   5097 3640   1.366 0.976
tt + 0j 105894 No 25487 6 5 24251 5.709 4.758
  116102 Yes 66911 149 123      
    No   78 66      
tt + 1j 105895 No 26980 21 18 24233 18.862 16.167
  116103 Yes 211254 960 787      
    No   638 517      
tt + 2j 105896 No 17487 69 53 14481 57.138 43.889
  116104 Yes 265166 2478 1957      
    No   2026 1548      
tt + 3j 105896 No 10990 96 77 10102 88.240 70.776
  116105 Yes 241235 3946 3022      
    No   3469 2619      
gg → ttbb (QCD) 116101 Yes 89887 3550 2560 483 19.070 13.752
qq → ttbb (QCD) 116106 Yes 19985 496 366 76.09 1.888 1.393
gg → ttbb (EWK) 116100 Yes 19987 981 706 47.02 2.308 1.661
<-- /editTable -->
 

Issues still to be resolved

1. In share/TtHHbbSetups.py:

Line: 270 to 358
  Currently, the type of event you are looking at is determined by looking at my_failEvent. States failing preselection have this equal to 0, passing preselection but not having a sensible final state equal 1 and passing preselection and having a sensible final state equal 3. These numbers are the basis of a number of bitwise tests - thus when setting your own my_failEvents, consider which bits in a binary string you want to represent various things, and then convert those to decimal.
Deleted:
<
<

Current samples in use

Input data and cross-sections

These cross-sections are for the overall process, at √s = 7 TeV.

The ttH sample cross-sections are provided for the overall process - the MC is divided into two samples with W+ and W- independent of one another. These two samples are merged before being put through the ANN.

The tt samples were initially generated to produce the equivalent of 75fb-1 of data, based on the LO cross-sections. Taking into account the k-factor of 1.84, this means that now all samples simulate 40.8fb-1 of data. These samples have also had a generator-level filter applied - most events (especially for tt+0j) are of no interest to us, so we don't want to fill up disk-space with them, so we apply filters based on the numbers of jets etc. The Filter Efficiency is the fraction of events that pass from the general sample into the final simulated sample. To clarify how all the numbers hang together, consider the case of tt+0j. We have simulated 66,911 events - as said above, this corresponds to 40.8fb-1 of data. We have a Filter Efficiency of 0.06774, so the full number of events that a complete semi-leptonic event would be comes to 987,762 events in 40fb-1. Divide this by 40 to get the number of events in 1fb-1 (i.e. the cross-section), and you get 24,694 events per fb-1. Our starting point for our cross-section is 13.18, with a k-factor of 1.84, which gives a cross-section of 24.25 - so all the numbers compare with each other pretty favourably. This of course makes getting from the number of sensible state events to the number expected per fb-1 rather easy - simply divide by 40.8.... You'll notice that the cross-section includes all the branching ratios already, so we don't need to worry about that.

**IMPORTANT** The Filter Efficiency for these samples was calculated based on a no-pileup sample. The filter is generator level, and one of the things it will cut an event for is not enough jets. However, pileup adds jets, but these are added well after the filter. The net result is that a number of events that failed the filter would have passed, had the pileup been added earlier in the process. This means the filter efficiency (and thus the cross-sections) are incorrect, by a yet to determined amount....

For the other samples, however, we do need to worry about branching ratios - the quoted initial cross-section includes all final states, so we need to apply branching ratios to the cross-section to reduce it down, so that it reflects the sample we've generated. We then subsequently need to reduce the cross-section further so that it reflects the number of sensible states.

Sample Dataset numbers Cross-section (pb) Branching Ratios Filter Efficiency What the multiplicative factors are Effective cross-section (pb) Sources
ttH 109840, 109841 0.09756 0.676*0.216*2*0.675 0.8355 Overall 0.01607 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt7TeV
      0.676   W → hadrons   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)    
      2   Account for the 2 W decay routes    
      0.675   H → bb    
        0.8355 Lepton filter efficiency   Filter eff: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGHSG5Dataset7TeV
tt + 0j 105894, 116102 13.18 1.84   For sample 105894 24.25120 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.06774 Filter efficiency for sample 116102   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
tt + 1j 105895, 116103 13.17 1.84   For sample 105895 24.23280 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.2142 Filter efficiency for sample 116103   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
tt + 2j 105896, 116104 7.87 1.84   For sample 105896 14.48080 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.4502 Filter efficiency for sample 116104   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
tt + 3j 105897, 116105 5.49 1.84   For sample 105897 10.10160 Initial cross-section and filter efficiency: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbar
        0.5860 Filter efficiency for sample 116105   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV
      1.84   k-factor    
gg → ttbb (QCD) 116101 0.8986 0.676*0.216*2*1.84   Overall 0.48285 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
qq → ttbb (QCD) 116106 0.1416 0.676*0.216*2*1.84   Overall 0.07609 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
gg → ttbb (EWK) 116100 0.0875 0.676*0.216*2*1.84   Overall 0.04702 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
qq → ttbb (EWK) 116107 0.0101 0.676*0.216*2*1.84   Overall 0.00543 Initial cross-section: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWGBGDataset7TeV#ttbarbbbar
      0.676   W → hadrons (electron/muon)   Branching ratios: 2008 PDG Booklet
      0.216   W → leptons (electron/muon)   k-factor: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopMC2009#ttbar_7_TeV - need to verify there's nothing more suitable than applying tt+X value!
      2   Account for the 2 W decay routes    
      1.84   k-factor    
<-- /editTable -->

These cross-sections and branching ratios are correct as of 8 Feb 2011. qq→ttbb (EWK) is currently not being used, thanks to a bug in the production of the MC

Number of events surviving preselection, weights and TrainWeights

This table will be completed with all the relevant weights and TrainWeights at a later date - these values are to be compared to the output from Computentp to ensure everything is working as intended, and are calculated for the sensible cross-sections/events. (A quick check of the TrainWeight is to multiply the number so events of each background by their TrainWeight and sum them - by design, this should equal the number of entries in the ttH sample.)

Sample Dataset Number Pileup?   Number of events     Cross-section (fb)  
      Total Passing Preselection Sensible States Total Passing Preselection Sensible States
ttH (W+ sample) 109840 Yes 29968 2685 1936      
    No   2497 1761      
ttH (W- sample) 109841 Yes 29980 2764 2020      
    No   2600 1879      
ttH (total)   Yes 59948 5449 3956 16.07 1.460 1.060
    No   5097 3640   1.366 0.976
tt + 0j 105894 No 25487 6 5 24251 5.709 4.758
  116102 Yes 66911 149 123      
    No   78 66      
tt + 1j 105895 No 26980 21 18 24233 18.862 16.167
  116103 Yes 211254 960 787      
    No   638 517      
tt + 2j 105896 No 17487 69 53 14481 57.138 43.889
  116104 Yes 265166 2478 1957      
    No   2026 1548      
tt + 3j 105896 No 10990 96 77 10102 88.240 70.776
  116105 Yes 241235 3946 3022      
    No   3469 2619      
gg → ttbb (QCD) 116101 Yes 89887 3550 2560 483 19.070 13.752
qq → ttbb (QCD) 116106 Yes 19985 496 366 76.09 1.888 1.393
gg → ttbb (EWK) 116100 Yes 19987 981 706 47.02 2.308 1.661
<-- /editTable -->
 

Setting Systematic Uncertainties

The fitting code can take into account two different types of systematic uncertainty - rate and shape. The basic method to obtain both these uncertainties is that you should make your input samples for both your nominal sample, and for the two bounds of a given error (e.g. Initial State Radiation, ISR). Repeat this for all of the errors you wish to consider. The rate systematic uncertainty is simply how the number of events change that pass your preselection cuts etc. (you can only consider this, if you like). To obtain the shape uncertainty, you should pass each of the resulting datasets through the ANN (up to and including the templating, so that you have ANN results for both the nominal results, and as a result of varying each background). These ANN outputs can then be used to produce the rate uncertainties based on their integrals, before being normalised to the nominal cross-section so as to find the shape uncertainty - a measure of the percentage change in the bin-by-bin distribution for each error.

 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback